stm32 gy-53-l1测距

时间: 2023-07-02 18:08:23 浏览: 186
GY-53-L1是一款激光测距模块,采用ToF(Time of Flight)技术,可以实现高精度的距离测量。在STM32控制器上使用GY-53-L1进行测距需要进行以下步骤: 1. 硬件连接:将GY-53-L1的VCC、GND和SCL、SDA引脚分别连接到STM32控制器的对应引脚上。 2. 初始化I2C接口:GY-53-L1模块使用I2C接口与STM32控制器通信,需要先初始化I2C接口。 3. 发送测距命令:向GY-53-L1发送测距命令,等待模块返回数据。 4. 解析数据:将从GY-53-L1模块返回的数据解析出距离信息。 以下是一个简单的代码示例: ```c #include "stm32f4xx.h" #include "gy-53-l1.h" int main(void) { GY53L1_Init(); // 初始化I2C接口 while (1) { uint16_t distance = GY53L1_MeasureDistance(); // 发送测距命令并获取距离信息 // 处理距离信息 } } ```
相关问题

stm32 gy-53-l1测距usart.c代码

以下是使用USART通信实现STM32与GY-53-L1测距模块进行通信的示例代码: ``` #include "stm32f10x.h" #include <stdio.h> // 定义USART相关的GPIO口 #define USARTx USART1 #define USARTx_CLK RCC_APB2Periph_USART1 #define USARTx_TX_PIN GPIO_Pin_9 #define USARTx_TX_GPIO_PORT GPIOA #define USARTx_TX_GPIO_CLK RCC_APB2Periph_GPIOA #define USARTx_RX_PIN GPIO_Pin_10 #define USARTx_RX_GPIO_PORT GPIOA #define USARTx_RX_GPIO_CLK RCC_APB2Periph_GPIOA // 定义USART接收缓冲区大小 #define USART_RX_BUF_SIZE 100 // 定义发送和接收状态 #define USART_SENDING 0 #define USART_RECEIVING 1 // 定义USART接收缓冲区 uint8_t USART_RX_BUF[USART_RX_BUF_SIZE]; uint16_t USART_RX_STA = 0; uint8_t USART_RX_STATUS = USART_RECEIVING; // USART初始化函数 void USART_Config(void) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(USARTx_CLK | USARTx_TX_GPIO_CLK | USARTx_RX_GPIO_CLK, ENABLE); // 配置USARTx_TX的GPIO口 GPIO_InitStructure.GPIO_Pin = USARTx_TX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(USARTx_TX_GPIO_PORT, &GPIO_InitStructure); // 配置USARTx_RX的GPIO口 GPIO_InitStructure.GPIO_Pin = USARTx_RX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(USARTx_RX_GPIO_PORT, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USARTx, &USART_InitStructure); USART_Cmd(USARTx, ENABLE); } // USART发送一个字节 void USART_SendByte(USART_TypeDef *USARTx, uint8_t byte) { while (USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET); USART_SendData(USARTx, byte); } // USART发送字符串 void USART_SendString(USART_TypeDef *USARTx, char *str) { while (*str) { USART_SendByte(USARTx, *str++); } } // USART接收中断处理函数 void USART1_IRQHandler(void) { uint8_t ch; if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { ch = USART_ReceiveData(USART1); // 如果接收到换行符,则表示一行数据接收完成 if (ch == '\n' || ch == '\r') { USART_RX_BUF[USART_RX_STA++] = ch; USART_RX_STATUS = USART_SENDING; } else { USART_RX_BUF[USART_RX_STA++] = ch; if (USART_RX_STA >= USART_RX_BUF_SIZE) { USART_RX_STATUS = USART_SENDING; } else { USART_RX_STATUS = USART_RECEIVING; } } } } int main(void) { uint32_t distance; USART_Config(); // 使能接收中断 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); while (1) { // 发送获取距离命令 USART_SendString(USART1, "AT+DIST?\r\n"); // 等待接收到距离数据 while (USART_RX_STATUS == USART_RECEIVING); // 解析距离数据 sscanf((const char *)USART_RX_BUF, "+DIST:%ldmm", &distance); printf("Distance: %ldmm\r\n", distance); // 清空接收缓冲区和状态 USART_RX_STA = 0; USART_RX_STATUS = USART_RECEIVING; // 延时一段时间 Delay(1000); } } ``` 在上述代码中,使用USART1与GY-53-L1测距模块进行通信,通过发送"AT+DIST?"命令获取距离数据。当接收到一行数据时,会将数据存储到USART_RX_BUF缓冲区中,直到接收到换行符或缓冲区已满。然后从缓冲区中解析出距离数据,并打印到串口终端上。最后清空接收缓冲区和状态,并延时一段时间再次发送命令。

stm32f1与GY-53-L1测距代码

以下是使用 STM32F1 和 GY-53-L1 模块进行测距的示例代码: ```c #include "stm32f10x.h" #include "stdio.h" #define I2C_SPEED 100000 #define GY53L1_ADDR 0x42 void I2C_Configuration(void); void I2C_WriteByte(uint8_t addr, uint8_t reg, uint8_t val); uint8_t I2C_ReadByte(uint8_t addr, uint8_t reg); void GY53L1_Init(void); uint16_t GY53L1_ReadDistance(void); int main(void) { uint16_t distance; char str[20]; I2C_Configuration(); GY53L1_Init(); while (1) { distance = GY53L1_ReadDistance(); sprintf(str, "distance: %d mm\r\n", distance); printf(str); delay_ms(500); } } void I2C_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; I2C_InitTypeDef I2C_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD; GPIO_Init(GPIOB, &GPIO_InitStructure); I2C_InitStructure.I2C_Mode = I2C_Mode_I2C; I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2; I2C_InitStructure.I2C_OwnAddress1 = 0x00; I2C_InitStructure.I2C_Ack = I2C_Ack_Enable; I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; I2C_InitStructure.I2C_ClockSpeed = I2C_SPEED; I2C_Init(I2C1, &I2C_InitStructure); I2C_Cmd(I2C1, ENABLE); } void I2C_WriteByte(uint8_t addr, uint8_t reg, uint8_t val) { while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)) ; I2C_GenerateSTART(I2C1, ENABLE); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)) ; I2C_Send7bitAddress(I2C1, addr, I2C_Direction_Transmitter); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)) ; I2C_SendData(I2C1, reg); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED)) ; I2C_SendData(I2C1, val); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED)) ; I2C_GenerateSTOP(I2C1, ENABLE); } uint8_t I2C_ReadByte(uint8_t addr, uint8_t reg) { uint8_t val; while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)) ; I2C_GenerateSTART(I2C1, ENABLE); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)) ; I2C_Send7bitAddress(I2C1, addr, I2C_Direction_Transmitter); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)) ; I2C_SendData(I2C1, reg); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED)) ; I2C_GenerateSTART(I2C1, ENABLE); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT)) ; I2C_Send7bitAddress(I2C1, addr, I2C_Direction_Receiver); while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED)) ; I2C_AcknowledgeConfig(I2C1, DISABLE); I2C_GenerateSTOP(I2C1, ENABLE); while (I2C_GetFlagStatus(I2C1, I2C_FLAG_RXNE) == RESET) ; val = I2C_ReceiveData(I2C1); return val; } void GY53L1_Init(void) { I2C_WriteByte(GY53L1_ADDR, 0x00, 0x51); } uint16_t GY53L1_ReadDistance(void) { uint8_t msb = I2C_ReadByte(GY53L1_ADDR, 0x8f); uint8_t lsb = I2C_ReadByte(GY53L1_ADDR, 0x10); return ((uint16_t) msb << 8) | lsb; } ``` 以上代码中,`I2C_Configuration` 函数用于配置 I2C 总线,`I2C_WriteByte` 和 `I2C_ReadByte` 函数分别用于向 GY-53-L1 模块写入和读取数据,`GY53L1_Init` 函数用于初始化 GY-53-L1 模块,`GY53L1_ReadDistance` 函数用于读取距离数据。在 `main` 函数中,循环读取距离数据并输出。注意,以上代码未包含延时函数的实现,需要自行实现或使用外部库。
阅读全文

相关推荐

最新推荐

recommend-type

STM32|4-20mA输出电路

STM32单片机在工业应用中经常被用于构建4-20mA输出接口的电路设计,这是因为STM32内嵌的DAC(数模转换器)可以提供高精度、高稳定性以及低漂移的模拟电流输出。4-20mA的电流范围是工业标准,常用于远距离传输信号,...
recommend-type

在STM32上通过UART+DMA实现One-Wire总线

在STM32上通过UART+DMA实现One-Wire总线 在STM32微控制器上,One-Wire总线是一种常用的总线协议,它使用一根并联总线完成对于多个设备的访问。通过上拉的OD门实现多设备的读写操作,通过ID区别设备,通过CRC5完成...
recommend-type

stm32开发 - 远离 Keil uVision, 回到 Visual Studio

stm32开发之远离Keil uVision,回到Visual Studio 在stm32开发中,选择合适的开发环境是一个非常重要的步骤。很多开发者都曾经使用Keil uVision进行stm32开发,但是却发现了很多不尽如人意的地方。例如,Keil ...
recommend-type

STM32F103 CMSIS-DAP调试器

STM32F103 CMSIS-DAP调试器是一款基于STM32F103微控制器的自制调试设备,主要用于Cortex-M系列处理器的开发和调试。CMSIS-DAP( Cortex Microcontroller Software Interface Standard - Debug Access Port)是ARM...
recommend-type

ubuntu20.04 stm32开发笔记---之开发环境搭建

在Ubuntu 20.04上进行STM32微控制器的开发,首先需要搭建一个适合的开发环境。这里不依赖于任何集成开发环境(IDE),而是采用命令行工具,这通常给开发者提供更大的灵活性和控制权。以下是详细的步骤: 1. **安装GNU...
recommend-type

HTML挑战:30天技术学习之旅

资源摘要信息: "desafio-30dias" 标题 "desafio-30dias" 暗示这可能是一个与挑战或训练相关的项目,这在编程和学习新技能的上下文中相当常见。标题中的数字“30”很可能表明这个挑战涉及为期30天的时间框架。此外,由于标题是西班牙语,我们可以推测这个项目可能起源于或至少是针对西班牙语使用者的社区。标题本身没有透露技术上的具体内容,但挑战通常涉及一系列任务,旨在提升个人的某项技能或知识水平。 描述 "desafio-30dias" 并没有提供进一步的信息,它重复了标题的内容。因此,我们不能从中获得关于项目具体细节的额外信息。描述通常用于详细说明项目的性质、目标和期望成果,但由于这里没有具体描述,我们只能依靠标题和相关标签进行推测。 标签 "HTML" 表明这个挑战很可能与HTML(超文本标记语言)有关。HTML是构成网页和网页应用基础的标记语言,用于创建和定义内容的结构、格式和语义。由于标签指定了HTML,我们可以合理假设这个30天挑战的目的是学习或提升HTML技能。它可能包含创建网页、实现网页设计、理解HTML5的新特性等方面的任务。 压缩包子文件的文件名称列表 "desafio-30dias-master" 指向了一个可能包含挑战相关材料的压缩文件。文件名中的“master”表明这可能是一个主文件或包含最终版本材料的文件夹。通常,在版本控制系统如Git中,“master”分支代表项目的主分支,用于存放项目的稳定版本。考虑到这个文件名称的格式,它可能是一个包含所有相关文件和资源的ZIP或RAR压缩文件。 结合这些信息,我们可以推测,这个30天挑战可能涉及了一系列的编程任务和练习,旨在通过实践项目来提高对HTML的理解和应用能力。这些任务可能包括设计和开发静态和动态网页,学习如何使用HTML5增强网页的功能和用户体验,以及如何将HTML与CSS(层叠样式表)和JavaScript等其他技术结合,制作出丰富的交互式网站。 综上所述,这个项目可能是一个为期30天的HTML学习计划,设计给希望提升前端开发能力的开发者,尤其是那些对HTML基础和最新标准感兴趣的人。挑战可能包含了理论学习和实践练习,鼓励参与者通过构建实际项目来学习和巩固知识点。通过这样的学习过程,参与者可以提高在现代网页开发环境中的竞争力,为创建更加复杂和引人入胜的网页打下坚实的基础。
recommend-type

【CodeBlocks精通指南】:一步到位安装wxWidgets库(新手必备)

![【CodeBlocks精通指南】:一步到位安装wxWidgets库(新手必备)](https://www.debugpoint.com/wp-content/uploads/2020/07/wxwidgets.jpg) # 摘要 本文旨在为使用CodeBlocks和wxWidgets库的开发者提供详细的安装、配置、实践操作指南和性能优化建议。文章首先介绍了CodeBlocks和wxWidgets库的基本概念和安装流程,然后深入探讨了CodeBlocks的高级功能定制和wxWidgets的架构特性。随后,通过实践操作章节,指导读者如何创建和运行一个wxWidgets项目,包括界面设计、事件
recommend-type

andorid studio 配置ERROR: Cause: unable to find valid certification path to requested target

### 解决 Android Studio SSL 证书验证问题 当遇到 `unable to find valid certification path` 错误时,这通常意味着 Java 运行环境无法识别服务器提供的 SSL 证书。解决方案涉及更新本地的信任库或调整项目中的网络请求设置。 #### 方法一:安装自定义 CA 证书到 JDK 中 对于企业内部使用的私有 CA 颁发的证书,可以将其导入至 JRE 的信任库中: 1. 获取 `.crt` 或者 `.cer` 文件形式的企业根证书; 2. 使用命令行工具 keytool 将其加入 cacerts 文件内: ```
recommend-type

VC++实现文件顺序读写操作的技巧与实践

资源摘要信息:"vc++文件的顺序读写操作" 在计算机编程中,文件的顺序读写操作是最基础的操作之一,尤其在使用C++语言进行开发时,了解和掌握文件的顺序读写操作是十分重要的。在Microsoft的Visual C++(简称VC++)开发环境中,可以通过标准库中的文件操作函数来实现顺序读写功能。 ### 文件顺序读写基础 顺序读写指的是从文件的开始处逐个读取或写入数据,直到文件结束。这与随机读写不同,后者可以任意位置读取或写入数据。顺序读写操作通常用于处理日志文件、文本文件等不需要频繁随机访问的文件。 ### VC++中的文件流类 在VC++中,顺序读写操作主要使用的是C++标准库中的fstream类,包括ifstream(用于从文件中读取数据)和ofstream(用于向文件写入数据)两个类。这两个类都是从fstream类继承而来,提供了基本的文件操作功能。 ### 实现文件顺序读写操作的步骤 1. **包含必要的头文件**:要进行文件操作,首先需要包含fstream头文件。 ```cpp #include <fstream> ``` 2. **创建文件流对象**:创建ifstream或ofstream对象,用于打开文件。 ```cpp ifstream inFile("example.txt"); // 用于读操作 ofstream outFile("example.txt"); // 用于写操作 ``` 3. **打开文件**:使用文件流对象的成员函数open()来打开文件。如果不需要在创建对象时指定文件路径,也可以在对象创建后调用open()。 ```cpp inFile.open("example.txt", std::ios::in); // 以读模式打开 outFile.open("example.txt", std::ios::out); // 以写模式打开 ``` 4. **读写数据**:使用文件流对象的成员函数进行数据的读取或写入。对于读操作,可以使用 >> 运算符、get()、read()等方法;对于写操作,可以使用 << 运算符、write()等方法。 ```cpp // 读取操作示例 char c; while (inFile >> c) { // 处理读取的数据c } // 写入操作示例 const char *text = "Hello, World!"; outFile << text; ``` 5. **关闭文件**:操作完成后,应关闭文件,释放资源。 ```cpp inFile.close(); outFile.close(); ``` ### 文件顺序读写的注意事项 - 在进行文件读写之前,需要确保文件确实存在,且程序有足够的权限对文件进行读写操作。 - 使用文件流进行读写时,应注意文件流的错误状态。例如,在读取完文件后,应检查文件流是否到达文件末尾(failbit)。 - 在写入文件时,如果目标文件不存在,某些open()操作会自动创建文件。如果文件已存在,open()操作则会清空原文件内容,除非使用了追加模式(std::ios::app)。 - 对于大文件的读写,应考虑内存使用情况,避免一次性读取过多数据导致内存溢出。 - 在程序结束前,应该关闭所有打开的文件流。虽然文件流对象的析构函数会自动关闭文件,但显式调用close()是一个好习惯。 ### 常用的文件操作函数 - `open()`:打开文件。 - `close()`:关闭文件。 - `read()`:从文件读取数据到缓冲区。 - `write()`:向文件写入数据。 - `tellg()` 和 `tellp()`:分别返回当前读取位置和写入位置。 - `seekg()` 和 `seekp()`:设置文件流的位置。 ### 总结 在VC++中实现顺序读写操作,是进行文件处理和数据持久化的基础。通过使用C++的标准库中的fstream类,我们可以方便地进行文件读写操作。掌握文件顺序读写不仅可以帮助我们在实际开发中处理数据文件,还可以加深我们对C++语言和文件I/O操作的理解。需要注意的是,在进行文件操作时,合理管理和异常处理是非常重要的,这有助于确保程序的健壮性和数据的安全。
recommend-type

【大数据时代必备:Hadoop框架深度解析】:掌握核心组件,开启数据科学之旅

![【大数据时代必备:Hadoop框架深度解析】:掌握核心组件,开启数据科学之旅](https://media.licdn.com/dms/image/C4E12AQGM8ZXs7WruGA/article-cover_image-shrink_600_2000/0/1601775240690?e=2147483647&v=beta&t=9j23mUG6vOHnuI7voc6kzoWy5mGsMjHvqq5ZboqBjjo) # 摘要 Hadoop作为一个开源的分布式存储和计算框架,在大数据处理领域发挥着举足轻重的作用。本文首先对Hadoop进行了概述,并介绍了其生态系统中的核心组件。深入分