将下面的代码转换成Julia语言:## starting values set.seed(1) S<-1000 PHI<-matrix(nrow=S,ncol=2) PHI[1,]<-phi<-c( mean.y, 1/var.y) ## Gibbs sampling algorithm for(s in 2:S) { # generate a new theta value from its full conditional mun<- ( mu0/t20 + n*mean.y*phi[2] ) / ( 1/t20 + n*phi[2] ) t2n<- 1/( 1/t20 + n*phi[2] ) phi[1]<-rnorm(1, mun, sqrt(t2n) ) # generate a new sigma^2 value from its full conditional nun<- nu0+n s2n<- (nu0*s20 + (n-1)*var.y + n*(mean.y-phi[1])^2 ) /nun phi[2]<- rgamma(1, nun/2, nun*s2n/2) PHI[s,]<-phi }
时间: 2024-03-06 16:46:24 浏览: 142
以下是将代码转换成Julia语言的结果:
```julia
using Distributions
Random.seed!(1)
S = 1000
PHI = zeros(S, 2)
phi = [mean(y), 1/var(y)]
PHI[1, :] .= phi
# Gibbs sampling algorithm
for s in 2:S
# generate a new theta value from its full conditional
mun = (mu0/t20 + n*mean(y)*phi[2]) / (1/t20 + n*phi[2])
t2n = 1 / (1/t20 + n*phi[2])
phi[1] = rand(Normal(mun, sqrt(t2n)), 1)[1]
# generate a new sigma^2 value from its full conditional
nun = nu0 + n
s2n = (nu0*s20 + (n-1)*var(y) + n*(mean(y)-phi[1])^2) / nun
phi[2] = rand(Gamma(nun/2, nun*s2n/2), 1)[1]
PHI[s, :] .= phi
end
```
注意,这里使用了Julia的Distributions库来生成正态分布和伽马分布的随机数。
阅读全文