newdata <- expand.grid(x1 = seq(min(data$x1), max(data$x1), length.out = 100), x2 = seq(min(data$x2), max(data$x2), length.out = 100)) newdata$y <- predict(model, newdata)
时间: 2023-06-17 09:07:04 浏览: 149
这段代码的作用是生成一个新的数据框,包含了x1和x2的所有可能的组合,并使用训练好的模型对这些新数据进行预测,并将预测结果保存在新数据框的y列中。
具体而言,expand.grid函数将x1和x2的取值范围分别均匀地划分成100份,然后生成所有可能的组合,并将这些组合保存在一个新的数据框中。接着,使用predict函数对新数据框中的每一行进行预测,预测结果即为该行对应的y值,最终将这些预测结果保存在新数据框的y列中。这样,我们就可以利用新数据框中的数据来可视化模型的预测结果,以便更好地理解模型的性能和特点。
相关问题
library(ggeffects) grid <- expand.grid(X1 = unique(model$X1), X2 = unique(model$X2), X3 = unique(model$X3), X4 = unique(model$X4), X5 = unique(model$X5)) pred <- ggpredict(model, newdata = grid) # 图像处理 # 绘制GAM图,可以使用ggplot2包: gg.gam <- ggplot(pred, aes(x = x, y = predicted, color = predicted)) + geom_point(size = 3) + labs(x = "Predictor", y = "Output") + ggtitle("Output vs Predictor") + xlab("Predictor") + ylab("Output") + scale_color_gradient(low = "blue", high = "red", name = "Output") print(gg.gam)如何解决将数据pred转换为数据框格式
可以使用ggeffects包中的函数ggpredict()将模型预测值转换为数据框格式。然后,使用as.data.frame()函数将其转换为数据框格式。以下是示例代码:
```
library(ggeffects)
grid <- expand.grid(X1 = unique(model$X1),
X2 = unique(model$X2),
X3 = unique(model$X3),
X4 = unique(model$X4),
X5 = unique(model$X5))
pred <- ggpredict(model, newdata = grid)
pred_df <- as.data.frame(pred)
```
这将把预测值存储在名为pred_df的数据框中。
data00=data m,n = np.shape(data00) a = np.array(data00) Data00 = a[1:m,2:n] Data00 = Data00.astype(np.float64) Power = Data00[:,13] Power_train = Power[0:96] P_min = np.min(Power_train) P_gap = np.max(Power_train)-np.min(Power_train) Power_uni = (Power-P_min)/P_gap # 提取imfs和剩余信号res emd = EMD() emd.emd(Power_uni) imfs, res = emd.get_imfs_and_residue() N = len(imfs) P_H = np.sum(imfs[0:6,:],axis=0) P_M = np.sum(imfs[6:12,:],axis=0) P_L = res P_H =np.expand_dims(P_H,axis=1) P_M =np.expand_dims(P_M,axis=1) P_L =np.expand_dims(P_L,axis=1) Nwp = Data00[:,0:7] Nwp_train = Nwp[0:96] N_min = np.min(Nwp_train,axis=0) N_gap = np.max(Nwp_train,axis=0)-np.min(Nwp_train,axis=0) Nwp_uni = (Nwp-N_min)/N_gap#(N,7) Weather = Data00[:,7:13] Weather_train = Weather[0:96] W_min = np.min(Weather_train,axis=0) W_gap = np.max(Weather_train,axis=0)-np.min(Weather_train,axis=0) Weather_uni = (Weather-W_min)/W_gap#(N,6) 优化代码
以下是部分代码的优化建议:
1. 对于以下代码段:
```
a = np.array(data00)
Data00 = a[1:m,2:n]
```
可以合并为一行:
```
Data00 = np.array(data00)[1:m,2:n]
```
2. 对于以下代码段:
```
P_H = np.sum(imfs[0:6,:],axis=0)
P_M = np.sum(imfs[6:12,:],axis=0)
P_L = res
P_H =np.expand_dims(P_H,axis=1)
P_M =np.expand_dims(P_M,axis=1)
P_L =np.expand_dims(P_L,axis=1)
```
可以使用 `np.newaxis` 替代 `np.expand_dims` 来实现:
```
P_H = np.sum(imfs[0:6,:],axis=0)[:, np.newaxis]
P_M = np.sum(imfs[6:12,:],axis=0)[:, np.newaxis]
P_L = res[:, np.newaxis]
```
3. 对于以下代码段:
```
N_min = np.min(Nwp_train,axis=0)
N_gap = np.max(Nwp_train,axis=0)-np.min(Nwp_train,axis=0)
Nwp_uni = (Nwp-N_min)/N_gap#(N,7)
```
可以使用 `np.ptp` 函数(peak-to-peak)来计算最大值和最小值的差:
```
N_min = np.min(Nwp_train,axis=0)
N_gap = np.ptp(Nwp_train,axis=0)
Nwp_uni = (Nwp-N_min)/N_gap#(N,7)
```
4. 对于以下代码段:
```
Weather = Data00[:,7:13]
Weather_train = Weather[0:96]
W_min = np.min(Weather_train,axis=0)
W_gap = np.max(Weather_train,axis=0)-np.min(Weather_train,axis=0)
Weather_uni = (Weather-W_min)/W_gap#(N,6)
```
可以使用与第三个优化建议类似的方法:
```
Weather = Data00[:,7:13]
Weather_train = Weather[0:96]
W_min = np.min(Weather_train,axis=0)
W_gap = np.ptp(Weather_train,axis=0)
Weather_uni = (Weather-W_min)/W_gap#(N,6)
```
当然,以上只是一些简单的优化建议,具体的优化效果还需要根据实际情况进行评估。
阅读全文
相关推荐







