python实现利用神经网络和BP算法,,对 MNIST 数据集中给定的测试集进行分类

时间: 2024-03-18 21:41:45 浏览: 81
好的,为了更具体地回答您的问题,我可以提供一份Python代码,该代码使用神经网络和BP算法对MNIST数据集中的测试集进行分类。以下是代码: ```python import numpy as np import struct # 读取MNIST数据集的函数 def load_mnist(path, kind='train'): labels_path = path + '/' + kind + '-labels-idx1-ubyte' images_path = path + '/' + kind + '-images-idx3-ubyte' with open(labels_path, 'rb') as lbpath: magic, n = struct.unpack('>II', lbpath.read(8)) labels = np.fromfile(lbpath, dtype=np.uint8) with open(images_path, 'rb') as imgpath: magic, num, rows, cols = struct.unpack('>IIII', imgpath.read(16)) images = np.fromfile(imgpath, dtype=np.uint8).reshape(len(labels), 784) return images, labels # 数据预处理函数 def preprocess_data(X, y): X = X.astype(np.float32) / 255.0 y = y.reshape(-1, 1) return X, y # 独热编码函数 def one_hot(y, n_classes): return np.eye(n_classes)[y.reshape(-1)] # sigmoid激活函数 def sigmoid(z): return 1.0 / (1.0 + np.exp(-z)) # sigmoid函数的导数 def sigmoid_prime(z): return sigmoid(z) * (1 - sigmoid(z)) # 前向传播函数 def feedforward(X, w1, b1, w2, b2): z1 = np.dot(X, w1) + b1 a1 = sigmoid(z1) z2 = np.dot(a1, w2) + b2 a2 = sigmoid(z2) return z1, a1, z2, a2 # 反向传播函数 def backprop(X, y, w1, b1, w2, b2, z1, a1, z2, a2): delta2 = a2 - y delta1 = np.dot(delta2, w2.T) * sigmoid_prime(z1) grad_w2 = np.dot(a1.T, delta2) grad_b2 = np.sum(delta2, axis=0, keepdims=True) grad_w1 = np.dot(X.T, delta1) grad_b1 = np.sum(delta1, axis=0) return grad_w1, grad_b1, grad_w2, grad_b2 # 训练神经网络函数 def train(X_train, y_train, n_hidden, n_epochs, eta): n_samples, n_features = X_train.shape n_classes = len(np.unique(y_train)) y_train_encoded = one_hot(y_train, n_classes) # 初始化权重和偏置 np.random.seed(0) w1 = np.random.normal(scale=0.1, size=(n_features, n_hidden)) b1 = np.zeros(n_hidden) w2 = np.random.normal(scale=0.1, size=(n_hidden, n_classes)) b2 = np.zeros(n_classes) # 训练神经网络 for i in range(n_epochs): z1, a1, z2, a2 = feedforward(X_train, w1, b1, w2, b2) grad_w1, grad_b1, grad_w2, grad_b2 = backprop(X_train, y_train_encoded, w1, b1, w2, b2, z1, a1, z2, a2) w1 -= eta * grad_w1 b1 -= eta * grad_b1 w2 -= eta * grad_w2 b2 -= eta * grad_b2 if (i+1) % 10 == 0: print("Epoch {:3d}/{:3d} | Cost {:.4f}".format(i+1, n_epochs, np.mean((y_train_encoded - a2)**2))) return w1, b1, w2, b2 # 测试神经网络函数 def test(X_test, y_test, w1, b1, w2, b2): z1, a1, z2, a2 = feedforward(X_test, w1, b1, w2, b2) y_pred = np.argmax(a2, axis=1) accuracy = np.sum(y_test == y_pred) / len(y_test) return accuracy # 主函数 def main(): # 加载数据集 X_train, y_train = load_mnist('data', kind='train') X_test, y_test = load_mnist('data', kind='t10k') X_train, y_train = preprocess_data(X_train, y_train) X_test, y_test = preprocess_data(X_test, y_test) # 训练神经网络 w1, b1, w2, b2 = train(X_train, y_train, n_hidden=50, n_epochs=100, eta=0.1) # 测试神经网络 accuracy = test(X_test, y_test, w1, b1, w2, b2) print("Test Accuracy: {:.2f}%".format(accuracy * 100)) if __name__ == '__main__': main() ``` 代码中使用了numpy库实现了神经网络的前向传播和反向传播过程,其中激活函数采用了sigmoid函数。训练过程中使用了随机梯度下降算法,每隔10个epoch输出一次损失函数的值。在测试集上评估模型的性能时,采用了准确率作为评价指标。您可以根据自己的需求进行代码的修改和调试。
阅读全文

相关推荐

最新推荐

recommend-type

tensorflow实现残差网络方式(mnist数据集)

在本文中,我们将深入探讨如何使用TensorFlow框架实现残差网络(ResNet)来处理MNIST数据集。残差网络是深度学习领域的一个重要突破,由何凯明等人提出,它解决了深度神经网络中梯度消失和训练难度增大的问题。尽管...
recommend-type

Python实现Keras搭建神经网络训练分类模型教程

在本教程中,我们将探讨如何使用Python中的Keras库构建神经网络分类模型。Keras是一个高级神经网络API,它构建在TensorFlow、Theano和CNTK等深度学习框架之上,提供了一个简洁而灵活的方式来构建和训练模型。 首先...
recommend-type

使用tensorflow实现VGG网络,训练mnist数据集方式

因此,在实际操作中,可能需要对VGG网络进行适当的调整,比如使用步长为1的池化层,或者在卷积层之间添加填充(padding)以保持输入尺寸。 训练VGG网络在MNIST上的步骤通常包括以下部分: 1. **数据预处理**:将...
recommend-type

基于多分类非线性SVM(+交叉验证法)的MNIST手写数据集训练(无框架)算法

本文将详细介绍如何运用多分类非线性SVM和交叉验证法对MNIST手写数字数据集进行训练,该过程不依赖于特定的框架,旨在提供一种原生的算法实现。 首先,我们需要理解多分类非线性SVM的概念。传统的二分类SVM寻找一个...
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。