训练面部识别模型以区分真实面部图像和生成的面部图像的python代码
时间: 2024-03-25 22:41:22 浏览: 62
以下是使用PyTorch框架搭建的训练面部识别模型的代码,用于区分真实面部图像和生成的面部图像:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import transforms
from PIL import Image
# 定义数据预处理
data_transforms = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
])
# 创建面部数据集类
class FaceDataset(Dataset):
def __init__(self, real_image_path, fake_image_path):
self.real_image_path = real_image_path
self.fake_image_path = fake_image_path
self.real_images = os.listdir(real_image_path)
self.fake_images = os.listdir(fake_image_path)
self.real_len = len(self.real_images)
self.fake_len = len(self.fake_images)
def __getitem__(self, index):
if index < self.real_len:
img = Image.open(os.path.join(self.real_image_path, self.real_images[index]))
label = torch.tensor([1])
else:
img = Image.open(os.path.join(self.fake_image_path, self.fake_images[index - self.real_len]))
label = torch.tensor([0])
img = data_transforms(img)
return img, label
def __len__(self):
return self.real_len + self.fake_len
# 定义卷积神经网络模型
class FaceModel(nn.Module):
def __init__(self):
super(FaceModel, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.fc1 = nn.Linear(256*4*4, 512)
self.fc2 = nn.Linear(512, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.relu(self.conv4(x))
x = x.view(-1, 256*4*4)
x = self.relu(self.fc1(x))
x = self.sigmoid(self.fc2(x))
return x
# 创建训练集和测试集
train_dataset = FaceDataset(real_image_path='real_images', fake_image_path='fake_images')
test_dataset = FaceDataset(real_image_path='test_real_images', fake_image_path='test_fake_images')
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
model = FaceModel()
for epoch in range(10):
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels.float())
loss.backward()
optimizer.step()
if i % 50 == 0:
print('Epoch: {}, Batch: {}, Loss: {}'.format(epoch, i, loss.item()))
# 测试模型
correct = 0
total = 0
for inputs, labels in test_loader:
outputs = model(inputs)
predicted = torch.round(outputs)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: {}%'.format(100 * correct / total))
```
其中real_image_path和fake_image_path分别为真实面部图像和生成的面部图像的路径,可以根据实际情况进行修改。训练模型的过程中,将真实面部图像和生成的面部图像作为正样本和负样本,使用交叉熵损失函数进行训练。测试模型时,使用测试集进行模型测试,并计算模型的准确率。
阅读全文
相关推荐
![.zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)