如何在jupyter notebook中定义年数总和法自定义函数
时间: 2024-09-16 20:01:23 浏览: 52
在Jupyter Notebook中定义一个基于年数总和法(Annuity)的自定义函数,通常用于计算定期等额付款(如贷款还款或养老金计划)在给定利率下的累计价值。下面是一个简单的Python示例:
```python
import math
def annuity_sum(n_years, payment, interest_rate):
"""
计算按年数总和法计算的投资或贷款累积值
参数:
n_years (int): 投资或贷款期限(年)
payment (float): 每年的等额支付金额
interest_rate (float): 年利率(小数形式)
返回:
float: 累积值
"""
# 使用复利公式 A = P * (1 + r/n) ** (n*t)
# 其中 A 是累积值,P 是付款,r 是年利率,n 是每年计息次数(假设为1次,对应简单利息),t 是年数
factor = (1 + interest_rate / 100) ** n_years
accumulated_value = payment * factor / (factor - 1)
return accumulated_value
# 示例
payment_per_year = 5000
interest_rate = 4 # 4%年利率
number_of_years = 5
total_value = annuity_sum(number_of_years, payment_per_year, interest_rate)
total_value,
阅读全文
相关推荐

















