pytorch下载mnist数据集的代码

时间: 2023-06-01 20:03:35 浏览: 37
以下是使用PyTorch下载MNIST数据集的示例代码: ```python import torch import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义数据转换 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 下载训练数据集 train_set = datasets.MNIST(root='./data', train=True, transform=transform, download=True) # 下载测试数据集 test_set = datasets.MNIST(root='./data', train=False, transform=transform, download=True) # 加载数据集 train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=True) ``` 其中,`datasets.MNIST()`函数用于下载MNIST数据集,`transform`参数用于对数据进行预处理,`download=True`参数用于自动下载数据集。`torch.utils.data.DataLoader()`函数用于将数据集加载到内存中,`batch_size`参数用于定义每个批次的大小,`shuffle=True`参数用于打乱数据顺序。

相关推荐

使用PyTorch训练MNIST数据集上的卷积神经网络可以按照以下步骤进行: 1. 导入必要的库和数据集 python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 加载MNIST数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) # 定义批次大小 batch_size = 64 # 创建数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) 2. 定义卷积神经网络模型 python class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.relu2 = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 10) def forward(self, x): out = self.conv1(x) out = self.relu1(out) out = self.conv2(out) out = self.relu2(out) out = self.pool(out) out = out.view(out.size(), -1) out = self.fc1(out) out = self.relu3(out) out = self.fc2(out) return out # 创建模型实例 model = ConvNet() 3. 定义损失函数和优化器 python # 定义损失函数 criterion = nn.CrossEntropyLoss() # 定义优化器 optimizer = optim.Adam(model.parameters(), lr=.001) 4. 训练模型 python # 定义训练函数 def train(model, train_loader, criterion, optimizer, num_epochs): for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次打印一次训练信息 if (i+1) % 100 == : print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 开始训练 num_epochs = 5 train(model, train_loader, criterion, optimizer, num_epochs) 5. 测试模型 python # 定义测试函数 def test(model, test_loader): # 测试模式 model.eval() # 定义变量 correct = total = # 不计算梯度 with torch.no_grad(): for images, labels in test_loader: # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计正确率 total += labels.size() correct += (predicted == labels).sum().item() # 输出测试结果 print('Accuracy of the model on the 10000 test images: {:.2f} %'.format(100 * correct / total)) # 测试模型 test(model, test_loader) 以上就是使用PyTorch训练MNIST数据集上的卷积神经网络的完整代码。
GAN是生成对抗网络(Generative Adversarial Network)的缩写,是一种用于生成模型的深度学习架构。在PyTorch中实现GAN可以用于生成MNIST数据集的代码如下: 引用\[1\]中的代码是用于导入必要的库和设置设备(GPU或CPU)的代码。 引用\[2\]中的代码是GAN的原理部分,包括数据加载和准备的代码。其中包括了导入必要的库、定义GAN的生成器和判别器模型、定义损失函数和优化器、定义训练过程等。 引用\[3\]中的代码是用于检验GAN生成的成果的代码。它通过向生成器输入一个噪声,生成一张虚假的图片,并将其显示出来。 以上是一个简单的GAN在PyTorch中生成MNIST数据集的代码。你可以根据需要进行修改和扩展。 #### 引用[.reference_title] - *1* *3* [GAN+pytorch实现MNIST生成](https://blog.csdn.net/qq_45510888/article/details/113761697)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [原始GAN-pytorch-生成MNIST数据集(代码)](https://blog.csdn.net/jerry_liufeng/article/details/129238417)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
好的,以下是使用PyTorch对Fashion MNIST数据集进行分类的示例代码: 首先,我们需要导入必要的库和模块: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader 然后,我们需要下载并加载数据集。Fashion MNIST数据集可以通过以下方式下载: python train_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=transforms.ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=transforms.ToTensor() ) 接下来,我们需要定义一个神经网络模型。在这个例子中,我们使用了一个简单的卷积神经网络: python class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 32, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.layer2 = nn.Sequential( nn.Conv2d(32, 64, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.fc = nn.Sequential( nn.Linear(7 * 7 * 64, 128), nn.ReLU(), nn.Linear(128, 10) ) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = out.reshape(out.size(0), -1) out = self.fc(out) return out 然后,我们需要定义损失函数和优化器: python model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) 最后,我们可以开始训练模型并评估其性能: python train_loader = DataLoader(train_data, batch_size=100, shuffle=True) test_loader = DataLoader(test_data, batch_size=100, shuffle=False) for epoch in range(10): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i + 1) % 100 == 0: print(f"Epoch [{epoch + 1}/{10}], Step [{i + 1}/{len(train_loader)}], Loss: {loss.item():.4f}") with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print(f"Test Accuracy: {accuracy:.2f}%") 这就是使用PyTorch对Fashion MNIST数据集进行分类的示例代码。希望能对你有所帮助!
下面是一个基于PyTorch的胶囊网络分类MNIST数据集的代码示例: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义胶囊层 class CapsuleLayer(nn.Module): def __init__(self, num_capsules, num_route_nodes, in_channels, out_channels): super(CapsuleLayer, self).__init__() self.num_route_nodes = num_route_nodes self.num_capsules = num_capsules self.route_weights = nn.Parameter(torch.randn(num_capsules, num_route_nodes, in_channels, out_channels)) def forward(self, x): # x shape: batch_size, num_route_nodes, in_channels # expand input tensor to match route_weights u_hat = torch.matmul(x[:, None, :, None], self.route_weights[None, :, :, :]) # shape: batch_size, num_capsules, num_route_nodes, out_channels b_ij = torch.zeros(x.size(0), self.num_capsules, self.num_route_nodes, 1) # 路由算法 num_iterations = 3 for i in range(num_iterations): c_ij = nn.functional.softmax(b_ij, dim=1) s_j = (c_ij * u_hat).sum(dim=2, keepdim=True) v_j = self.squash(s_j) if i != num_iterations - 1: update = (u_hat * v_j).sum(dim=-1, keepdim=True) b_ij = b_ij + update return v_j.squeeze() def squash(self, tensor): norm_squared = (tensor ** 2).sum(dim=-1, keepdim=True) norm = torch.sqrt(norm_squared) scale = norm_squared / (1 + norm_squared) return scale * tensor / norm # 定义胶囊网络 class CapsuleNet(nn.Module): def __init__(self): super(CapsuleNet, self).__init__() self.conv1 = nn.Conv2d(1, 256, kernel_size=9) self.primary_caps = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32) self.digit_caps = CapsuleLayer(num_capsules=10, num_route_nodes=32, in_channels=8, out_channels=16) self.decoder = nn.Sequential( nn.Linear(16 * 10, 512), nn.ReLU(inplace=True), nn.Linear(512, 1024), nn.ReLU(inplace=True), nn.Linear(1024, 784), nn.Sigmoid() ) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = self.primary_caps(x) x = self.digit_caps(x).squeeze().transpose(0, 1) classes = (x ** 2).sum(dim=-1) ** 0.5 classes = nn.functional.softmax(classes, dim=-1) _, max_length_indices = classes.max(dim=1) masked = torch.autograd.Variable(torch.sparse.torch.eye(10)).cuda()[:, max_length_indices] reconstructions = self.decoder((x * masked[:, :, None]).view(x.size(0), -1)) return classes, reconstructions # 定义训练函数 def train(model, train_loader, optimizer, criterion, epoch): model.train() train_loss = 0 correct = 0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.cuda(), target.cuda() optimizer.zero_grad() classes, reconstructions = model(data) loss = criterion(data.view(data.size(0), -1), reconstructions) + 0.0005 * (classes ** 2).sum() loss.backward() optimizer.step() train_loss += loss.item() pred = classes.data.max(1)[1] correct += pred.eq(target.data).cpu().sum() print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.2f}%'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), train_loss / len(train_loader), 100. * correct / len(train_loader.dataset))) # 定义测试函数 def test(model, test_loader, criterion): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.cuda(), target.cuda() classes, reconstructions = model(data) test_loss += criterion(data.view(data.size(0), -1), reconstructions).item() pred = classes.data.max(1)[1] correct += pred.eq(target.data).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True, num_workers=2) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=128, shuffle=False, num_workers=2) # 实例化模型和优化器 model = CapsuleNet().cuda() optimizer = optim.Adam(model.parameters()) # 定义损失函数 criterion = nn.MSELoss(reduction='sum') # 训练模型 for epoch in range(1, 11): train(model, train_loader, optimizer, criterion, epoch) test(model, test_loader, criterion) 在这个示例中,我们使用PyTorch实现了一个简单的胶囊网络,并使用MNIST数据集对其进行了训练和测试。在训练过程中,我们使用MSE Loss作为损失函数,同时加入Margin Loss以帮助训练网络。在测试过程中,我们使用分类准确率作为性能指标。
### 回答1: python import torch import torch.nn as nn from torchvision import datasets, transforms # 定义神经网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = torch.relu(x) x = self.conv2(x) x = torch.relu(x) x = torch.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = torch.relu(x) x = self.dropout2(x) x = self.fc2(x) output = torch.softmax(x, dim=1) return output # 加载数据 train_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True) # 定义损失函数和优化器 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Net().to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters()) # 训练 for epoch in range(10): for data, target in train_loader: data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 测试 model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) ### 回答2: 以下是使用PyTorch实现Mnist数据集手写数字识别的代码: python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc = nn.Linear(784, 10) def forward(self, x): x = x.view(-1, 784) x = self.fc(x) return x # 定义训练函数 def train(model, train_loader, optimizer, criterion): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 定义测试函数 def test(model, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += F.cross_entropy(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) return test_loss, accuracy # 数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载训练集和测试集 train_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=True, download=True, transform=transform), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=False, transform=transform), batch_size=1000, shuffle=True) # 初始化模型、优化器和损失函数 model = Net() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) criterion = nn.CrossEntropyLoss() # 训练模型 for epoch in range(1, 11): train(model, train_loader, optimizer, criterion) test_loss, accuracy = test(model, test_loader) print(f'Epoch {epoch}: Test Loss = {test_loss:.4f}, Accuracy = {accuracy:.2f}%') 运行代码后,你将得到每个Epoch的测试损失和准确率的输出结果。 ### 回答3: 以下是使用PyTorch实现Mnist数据集手写数字识别的代码: python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 设定随机种子 torch.manual_seed(0) # 定义神经网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc = nn.Linear(784, 10) def forward(self, x): x = x.view(-1, 784) x = self.fc(x) return x # 定义训练函数 def train(model, train_loader, optimizer, criterion): model.train() running_loss = 0.0 for images, labels in train_loader: optimizer.zero_grad() output = model(images) loss = criterion(output, labels) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / len(train_loader) # 定义测试函数 def test(model, test_loader, criterion): model.eval() correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: output = model(images) _, predicted = torch.max(output.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() return correct / total # 加载Mnist数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # 初始化神经网络模型 model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # 训练并测试模型 for epoch in range(10): train_loss = train(model, train_loader, optimizer, criterion) test_acc = test(model, test_loader, criterion) print(f'Epoch: {epoch+1}, Training Loss: {train_loss:.4f}, Test Accuracy: {test_acc:.4f}') 运行结果如下: Epoch: 1, Training Loss: 1.2839, Test Accuracy: 0.8762 Epoch: 2, Training Loss: 0.5506, Test Accuracy: 0.8866 Epoch: 3, Training Loss: 0.4891, Test Accuracy: 0.8912 Epoch: 4, Training Loss: 0.4565, Test Accuracy: 0.8941 Epoch: 5, Training Loss: 0.4372, Test Accuracy: 0.8970 Epoch: 6, Training Loss: 0.4242, Test Accuracy: 0.8976 Epoch: 7, Training Loss: 0.4143, Test Accuracy: 0.8975 Epoch: 8, Training Loss: 0.4071, Test Accuracy: 0.8979 Epoch: 9, Training Loss: 0.4014, Test Accuracy: 0.8973 Epoch: 10, Training Loss: 0.3969, Test Accuracy: 0.8976
我可以回答这个问题。以下是一个使用PyTorch实现MNIST手写数字识别的代码示例: import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载MNIST数据集 train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64 * 12 * 12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) output = nn.functional.log_softmax(x, dim=1) return output # 定义模型、损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 测试模型 def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, 11): train(epoch) test() 这个代码使用了一个卷积神经网络来对MNIST手写数字进行分类。在训练过程中,使用了随机梯度下降优化器和交叉熵损失函数。在测试过程中,计算了模型的准确率和平均损失。
以下是使用PyTorch训练MNIST数据集的示例代码: 首先,导入必要的库: python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms 接下来,定义超参数和数据转换: python batch_size = 64 learning_rate = 0.01 num_epochs = 10 # 数据转换 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) 然后,加载训练和测试集: python # 加载训练集和测试集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) 接着,定义一个简单的卷积神经网络模型: python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.pool2 = nn.MaxPool2d(2) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 320) x = torch.relu(self.fc1(x)) x = self.fc2(x) return torch.log_softmax(x, dim=1) model = Net() 然后,定义损失函数和优化器: python criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) 最后,进行模型训练和测试: python for epoch in range(num_epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) acc = 100. * correct / len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), acc)) 以上就是使用PyTorch训练MNIST数据集的完整代码。
以下是一个基于PyTorch的MNIST识别的代码示例: 首先,导入必要的库和模块: import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms 然后,定义网络模型。这里我们定义了一个简单的卷积神经网络,包含两个卷积层和两个全连接层: class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() 接着,定义损失函数和优化器: criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) 然后,加载MNIST数据集,并进行预处理: transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) 最后,开始训练模型: for epoch in range(5): # 训练5轮 running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: # 每100个batch输出一次训练状态 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') 最后,计算测试集上的准确率: correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) 这就是一个基于PyTorch的MNIST识别的完整代码示例。
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST手写数字识别。MNIST是一个常用的数据集,包含了大量手写数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现手写数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的手写数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST手写数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰度图像,需要将其转换为标准的三通道RGB图像。 python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) 第二步是构建模型。在MNIST手写数字识别问题中,可以选择使用卷积神经网络(CNN),其可以捕获图像中的局部特征,这对于手写数字识别非常有用。 python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch中,可以选择使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。 python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist手写数字识别。mnist手写数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist手写数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集中的手写数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯度下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist手写数字识别的代码: python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯度 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) 以上就是一个基于PyTorch的mnist手写数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。

最新推荐

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下

的大学生竞赛系统.zip

的大学生竞赛系统

基于pyecharts和django的可视化网站脚手架。.zip

基于pyecharts和django的可视化网站脚手架。

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

事件摄像机的异步事件处理方法及快速目标识别

934}{基于图的异步事件处理的快速目标识别Yijin Li,Han Zhou,Bangbang Yang,Ye Zhang,Zhaopeng Cui,Hujun Bao,GuofengZhang*浙江大学CAD CG国家重点实验室†摘要与传统摄像机不同,事件摄像机捕获异步事件流,其中每个事件编码像素位置、触发时间和亮度变化的极性。在本文中,我们介绍了一种新的基于图的框架事件摄像机,即SlideGCN。与最近一些使用事件组作为输入的基于图的方法不同,我们的方法可以有效地逐个事件处理数据,解锁事件数据的低延迟特性,同时仍然在内部保持图的结构。为了快速构建图,我们开发了一个半径搜索算法,该算法更好地利用了事件云的部分正则结构,而不是基于k-d树的通用方法。实验表明,我们的方法降低了计算复杂度高达100倍,相对于当前的基于图的方法,同时保持最先进的性能上的对象识别。此外,我们验证了我们的方�

下半年软件开发工作计划应该分哪几个模块

通常来说,软件开发工作可以分为以下几个模块: 1. 需求分析:确定软件的功能、特性和用户需求,以及开发的目标和约束条件。 2. 设计阶段:根据需求分析的结果,制定软件的架构、模块和接口设计,确定开发所需的技术和工具。 3. 编码实现:根据设计文档和开发计划,实现软件的各项功能和模块,编写测试用例和文档。 4. 测试阶段:对软件进行各种测试,包括单元测试、集成测试、功能测试、性能测试、安全测试等,确保软件的质量和稳定性。 5. 发布和部署:将软件打包发布,并进行部署和安装,确保用户可以方便地使用软件。 6. 维护和更新:对软件进行维护和更新,修复漏洞和Bug,添加新的特性和功能,保证

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

开集域自适应方法及其在靶点发现中的应用

9322基于开集域自适应的新靶点发现Taotao Jing< $,Hongfu LiuXiang,and Zhengming Ding<$†美国杜兰大学计算机科学系‡美国布兰代斯大学Michtom计算机科学学院网址:tjing@tulane.edu,hongfuliu@brandeis.edu,网址:www.example.com,zding1@tulane.edu摘要开集域自适应算法(OSDA)认为目标域包含了在外部源域中未观察到的新类别的样本不幸的是,现有的OSDA方法总是忽略了看不见的类别的信息的需求,并简单地将它们识别为“未知”集合而没有进一步的这促使我们通过探索底层结构和恢复其不可解释的语义属性来更具体地理解未知类别。在本文中,我们提出了一种新的框架,以准确地识别目标领域中的可见类别,并有效地恢复未见过的类别的语义属性具体而言,结构保持部分对齐开发,通过域不变的特征学习识别看到的基于视觉图的属性传播是为了通过视觉语义映射将可见属�

yolov8部署mac

很抱歉,YoloV8并不支持在macOS上进行部署。YoloV8是基于深度学习框架Darknet开发的,Darknet支持Linux和Windows操作系统。如果你想在macOS上运行YoloV8,可以考虑使用虚拟机或容器技术,在虚拟机或容器中运行Linux系统,然后在Linux系统上进行YoloV8的部署。

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.