class Agent(): """Interacts with and learns from the environment.与环境互动并从中学习""" def __init__(self, state_size, action_size, n_step, per, munchausen, distributional, D2RL, noise_type, curiosity, random_seed, hidden_size, BUFFER_SIZE = int(1e6), # replay buffer size BATCH_SIZE = 128, # minibatch size GAMMA = 0.99, # discount factor TAU = 1e-3, # for soft update of target parameters LR_ACTOR = 1e-4, # learning rate of the actor LR_CRITIC = 1e-4, # learning rate of the critic WEIGHT_DECAY = 0,#1e-2 # L2 weight decay LEARN_EVERY = 1, LEARN_NUMBER = 1, EPSILON = 1.0, EPSILON_DECAY = 1, device = "cuda", frames = 100000, worker=1 ):
时间: 2023-12-05 19:03:36 浏览: 192
这是一个名为 Agent 的类,用于与环境进行交互和学习。它的构造函数接受多个参数,包括状态空间大小,动作空间大小,n 步回报,优先回放经验 (PER),Munchausen 强化学习,分布式学习,D2RL 策略,噪声类型,好奇心,随机种子,隐藏层大小等。其他重要的参数包括回放缓冲区大小,小批量大小,折扣因子,软更新参数的 tau 值,演员网络和评论家网络的学习速率,L2 权重衰减,学习频率,学习次数,epsilon-greedy 策略中的初始 epsilon 值和 epsilon 的衰减速率等。该类默认使用 GPU (cuda) 设备,并提供了一个 worker 参数用于指定要使用的 CPU 工作线程数。
相关问题
g_data = { ('drug', 'interacts', 'drug'): (ddi_idxs_ndarray[0], ddi_idxs_ndarray[1]), ('drug', 'interacts_reverse', 'drug'): (ddi_idxs_ndarray[1], ddi_idxs_ndarray[0]), ('protein', 'acts_on', 'drug'): (drug_with_protein[1], drug_with_protein[0]), } g = dgl.heterograph(g_data)为一个DGL异质图,请写一个SAGEConv模型,对异质图进行采样和聚合
下面是一个使用SAGEConv模型对异质图进行采样和聚合的示例代码:
```python
import dgl
import torch
import torch.nn as nn
import dgl.function as fn
from dgl.nn.pytorch import SAGEConv
class SAGEModel(nn.Module):
def __init__(self, in_feats, hidden_feats, out_feats):
super().__init__()
self.conv1 = SAGEConv(in_feats, hidden_feats, 'mean')
self.conv2 = SAGEConv(hidden_feats, out_feats, 'mean')
def forward(self, g, inputs):
h = inputs
h = self.conv1(g, h)
h = nn.ReLU()(h)
h = self.conv2(g, h)
return h
# 假设输入特征的维度为64,中间层维度为128,输出维度为32
in_feats, hidden_feats, out_feats = 64, 128, 32
# 创建异质图
g_data = {('drug', 'interacts', 'drug'): (ddi_idxs_ndarray[0], ddi_idxs_ndarray[1]),
('drug', 'interacts_reverse', 'drug'): (ddi_idxs_ndarray[1], ddi_idxs_ndarray[0]),
('protein', 'acts_on', 'drug'): (drug_with_protein[1], drug_with_protein[0])}
g = dgl.heterograph(g_data)
# 创建输入特征
inputs = {'drug': torch.randn(g.number_of_nodes('drug'), in_feats),
'protein': torch.randn(g.number_of_nodes('protein'), in_feats)}
# 创建SAGE模型
model = SAGEModel(in_feats, hidden_feats, out_feats)
# 对异质图进行采样和聚合
h = model(g, inputs)
```
该示例代码中使用了两层SAGEConv模型,其中第一层的输入特征为64维,输出特征为128维,第二层的输入特征为128维,输出特征为32维。在模型的forward函数中,首先对输入特征进行第一层采样和聚合,然后使用ReLU激活函数进行非线性变换,最后对结果进行第二层采样和聚合。最终得到的特征表示h可以用于下游任务,例如节点分类或链接预测。
6. What is the State chart Diagram? Explain the following. a. Process b.Data Flows c. Actor d.Data Stores
State chart diagram is a graphical representation of the states and state transitions of a system. It describes the behavior of a system over time and helps to model the dynamic aspects of a system.
a. Process: A process is a set of activities that are performed to achieve a specific goal. In a state chart diagram, a process is represented by a rectangular box with rounded corners. It shows the steps involved in achieving the goal of the system.
b. Data Flows: Data flows are the movement of data from one part of the system to another. In a state chart diagram, data flows are shown as arrows with labels that represent the data being transferred. Data flows can be used to represent inputs, outputs, and intermediate data.
c. Actor: An actor is a person, organization, or system that interacts with the system being modeled. In a state chart diagram, an actor is represented by a stick figure. Actors can be used to represent users, other systems, or external entities that interact with the system.
d. Data Stores: A data store is a repository of data that is used by the system. In a state chart diagram, a data store is represented by a rectangle with two parallel lines at the top and bottom. Data stores can be used to represent databases, files, or other storage mechanisms used by the system.
阅读全文