开发工具 1、Jdk 2、Hadoop 3、Intellij Idea等 项目描述 本项目有一部分时间戳数据,请编写Mapreduce程序将这些时间戳按升序进行排序,同时转换成对应的date时间。 例如: 1100186731 1100185961 排序转换后: 1100185961, Thu Nov 11 23:12:41 CST 2004 1100186731, Thu Nov 11 23:25:31 CST 2004 时间戳数据: 1100183757 1100184447 1100185952 1100186732 1100186731 1100185961 1100183809 1100185915 1100184420 1100185924 1100186737 1100183797 1100186727 1100185932 1100183734 1100184820
时间: 2024-03-14 19:47:28 浏览: 65
SpringBoot+Mybatius图书管理系统 语言:Java 开发工具:IntelliJIDEA-2019.3 JDK版
好的,我们可以使用Hadoop MapReduce来实现时间戳数据的排序和转换。下面是一个示例程序:
1. 编写Mapper类
Mapper类的作用是将输入的时间戳数据解析成LongWritable类型的键值对,其中键是时间戳,值可以是任意类型,这里我们用LongWritable类型的1。
```java
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class TimestampMapper extends Mapper<Object, Text, LongWritable, LongWritable> {
private LongWritable timestamp = new LongWritable();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
long ts = Long.parseLong(line.trim());
timestamp.set(ts);
context.write(timestamp, new LongWritable(1));
}
}
```
2. 编写Reducer类
Reducer类的作用是将Mapper输出的键值对按照键进行排序,并将时间戳转换成对应的日期时间格式。由于Mapper输出的值没有实际作用,这里我们将Reducer的输入值设为LongWritable类型的1,输出值设为Text类型的日期时间格式。
```java
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;
public class TimestampReducer extends Reducer<LongWritable, LongWritable, Text, Text> {
private Text dateText = new Text();
public void reduce(LongWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long ts = key.get();
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date = sdf.format(new Date(ts * 1000));
dateText.set(date);
context.write(new Text(String.valueOf(ts)), dateText);
}
}
```
3. 编写Driver类
Driver类的作用是组织MapReduce程序的运行流程,并设置相关的输入输出路径和格式。
```java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class TimestampSort {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: timestamps <input> <output>");
System.exit(2);
}
Job job = Job.getInstance(conf, "Timestamp Sort");
job.setJarByClass(TimestampSort.class);
job.setMapperClass(TimestampMapper.class);
job.setReducerClass(TimestampReducer.class);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(LongWritable.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
TextInputFormat.addInputPath(job, new Path(otherArgs[0]));
TextOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
4. 运行程序
在IntelliJ IDEA中,我们可以直接运行main函数来启动MapReduce程序。在运行程序之前,需要将时间戳数据文件上传到HDFS中,然后将文件路径作为MapReduce程序的输入路径,将输出路径作为程序的输出路径。
```bash
$ hadoop fs -put timestamps.txt /user/hadoop/timestamps.txt
$ hadoop jar TimestampSort.jar /user/hadoop/timestamps.txt /user/hadoop/output
```
其中,TimestampSort.jar是我们打包好的MapReduce程序的jar包,/user/hadoop/timestamps.txt是输入路径,/user/hadoop/output是输出路径。运行程序结束后,可以在输出路径中查看排序后的时间戳和对应的日期时间格式。
阅读全文