请给出基于cnn的图像去雾的python代码案例
时间: 2024-12-18 08:16:35 浏览: 5
基于CNN(卷积神经网络)的图像去雾通常涉及使用深度学习模型来恢复清晰度,去除图像中的模糊和雾气效果。以下是一个简单的Python代码示例,使用Keras库构建了一个轻量级的U-Net模型来进行去雾处理。请注意,这只是一个基础框架,实际应用中可能需要大量的数据预处理、模型训练以及后处理步骤。
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, UpSampling2D, concatenate, Input, Dropout
from tensorflow.keras.models import Model
def unet_model(input_shape=(256, 256, 3)):
inputs = Input(shape=input_shape)
# 下采样层
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
# 中间层
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
# 上采样层
upsample2 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv2)
merge2 = concatenate([upsample2, conv1], axis=3)
conv3 = Conv2D(64, (3, 3), activation='relu', padding='same')(merge2)
conv3 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv3)
upsample1 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv3)
merge1 = concatenate([upsample1, conv1], axis=3)
conv4 = Conv2D(32, (3, 3), activation='relu', padding='same')(merge1)
conv4 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv4)
outputs = Conv2D(3, (1, 1), activation='sigmoid')(conv4) # 输出通道数应与输入图像通道数一致
model = Model(inputs=[inputs], outputs=[outputs])
return model
# 假设已经准备好的训练数据和验证数据
train_dataset, val_dataset = ... # 加载并预处理数据
model = unet_model()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_dataset, validation_data=val_dataset, epochs=10)
# 使用模型对新图像去雾
new_image = ... # 读取待处理的图像
dehazed_image = model.predict(new_image)
```
阅读全文