选择一门编程语言 (Python)绘制一辆简易的智能小车,其外形为一矩形(长度、宽度自拟), 并获取所绘制的智能小车质心坐标。通过编程绘制车辆模型,参数自行拟定。实现手动控 制其前后运动,以固定角度 (10°/20°)转向。

时间: 2024-04-14 17:27:01 浏览: 82
PDF

python写的一个小汽车程序

对于绘制智能小车并实现手动控制的任务,你可以使用Python编程语言和一些图形库(如matplotlib)来实现。下面是一个简单的示例代码,可以帮助你开始: ```python import matplotlib.pyplot as plt class SmartCar: def __init__(self, length, width): self.length = length self.width = width self.x = 0 # 初始x坐标 self.y = 0 # 初始y坐标 self.angle = 0 # 初始角度 def plot_car(self): car_shape = plt.Rectangle((self.x, self.y), self.length, self.width, angle=self.angle, color='blue') plt.gca().add_patch(car_shape) plt.axis('scaled') plt.show() def move_forward(self, distance): self.x += distance * math.cos(math.radians(self.angle)) self.y += distance * math.sin(math.radians(self.angle)) def move_backward(self, distance): self.x -= distance * math.cos(math.radians(self.angle)) self.y -= distance * math.sin(math.radians(self.angle)) def turn_left(self, angle): self.angle += angle def turn_right(self, angle): self.angle -= angle def get_centroid(self): centroid_x = self.x + self.length / 2 centroid_y = self.y + self.width / 2 return centroid_x, centroid_y # 创建一个长度为10,宽度为5的智能小车实例 car = SmartCar(10, 5) # 前进10个单位 car.move_forward(10) # 转向10° car.turn_left(10) # 后退5个单位 car.move_backward(5) # 获取质心坐标 centroid_x, centroid_y = car.get_centroid() print("质心坐标: ({}, {})".format(centroid_x, centroid_y)) # 绘制智能小车 car.plot_car() ``` 你可以根据需要调整参数和方法,以适应你的具体要求。这段代码会绘制一个长度为10,宽度为5的矩形小车,并根据移动和转向操作进行相应的更新和绘制。最后,它会输出智能小车的质心坐标。
阅读全文

相关推荐

zip
【资源说明】 基于Python实现的强化学习的智能体小车+项目说明+模型.zip 此无人车AI项目使用的Deep Q-learning算法,是DeepMind在2013年发明的深度强化学习算法,将Q-learning的思想与神经网络算法结合,也算是现代强化学习算法的源头了。研究者用这个算法在2015年让计算机学会了49种Atari游戏,并在大部分游戏中击败了人类。从适用性上来讲,我们不需要告诉AI具体的规则,只要让它不断摸索,它就能慢慢从中找到规律,完成许多之前被认为只有人类能完成的智力活动。 既然是Q-learning和Deep learning的结合,就先结合无人车AI来讨论什么是Q-learning。 Q-learning是一种强化学习算法,无人车需要根据当前状态来采取动作,获得相应的奖励之后,再去改进这些动作,使得下次再到相同的状态时,无人车能做出更优的选择。我们用Q(S,A)表示在S状态时,采取A动作所获得的**效用值**。下面用字母R代表奖励(Rewards),S'代表采取A动作后到达的新位置。(奖励值R与效用值Q的区别在于,R表示的是这个**位置**的奖励,比如对于无人车而言障碍物的位置奖励是-100,河流的位置奖励是-120,柏油路的奖励是100,沙路的奖励是50,目标点的奖励是10000。而Q代表的是,采取这个**动作**的效用值,用于评价在特定状态下采取这个动作的优劣,可以将之理解为无人车的大脑,它是对所有已知状态的综合考虑) 伪代码如下: Initialize Q arbitrarily // 随机初始化Q值 Repeat (for each episode): // 每一次尝试,从车子出发到撞墙是一个episode Initialize S // 车辆出发,S为初始位置的状态 Repeat (for each step of episode): Q(S,A) ← (1-α)*Q(S,A) + α*[R + γ*maxQ(S',a)] // Q-learning核心贝尔曼方程,更新动作效用值 S ← S' // 更新位置 until S is terminal // 位置到达终点 贝尔曼方程(Bellman Equation)中,γ为折扣因子,α为学习速率。γ越大,无人车会越重视以前的经验,越小就更重视眼前利益。α取值范围为0~1,取值越大,保留之前训练的效果就越少。可以看出当α取值为0时,无论如何训练AI也无法学习到新Q值;α取值为1时,新Q值将完全取代旧Q值,每次训练得到新值就会完全忘记之前的训练结果。这些参数值都是人为设定的,需要根据经验慢慢调整。 然后我们将Q-learning算法与深度学习结合。从High Level来看,Q-learning已经实现无人车基本的躲避路障功能,而深度学习算法可以让无人车自动总结并学习特征,减少人为设定特征的不完备性,以更好的适应非常复杂的环境条件。 首先,用一个深度神经网络来作为Q值的网络,地图上每个点有坐标(X1, X2),将此状态输入神经网络来预测每个方向的Q值(图中假设有四个actions对应四个方向,所以一共得到4个新的Q值)。Q-target表示上一次到达该状态时所得到的Q值,然后使用均方差(mean-square error)来定义Loss Function。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!

最新推荐

recommend-type

MayaPython简易教程.doc

Python是一门简洁、强大且易于学习的编程语言,而Maya Python则是通过Python包装MEL命令,使得Python可以直接调用Maya的功能。 **为什么要学习Python?** Python的易读性和广泛适用性使其成为Maya脚本的理想选择。...
recommend-type

详解C#中一维数组的插入

C# 作为一门现代化的编程语言,提供了多种数组操作方式,包括插入、删除、修改等。 一维数组插入的实现 在 C# 中,一维数组插入的实现可以通过使用 ArrayList 类来实现。ArrayList 是一个动态数组,提供了插入、...
recommend-type

Python语言实现百度语音识别API的使用实例

Python作为一门广泛应用于人工智能领域的语言,其简洁的语法和丰富的库使得与百度API的集成变得简单。 首先,我们需要获取访问令牌(access token)。这可以通过调用特定的API完成,提供你的apiKey和secretKey。在...
recommend-type

人工智能 一字棋游戏代码

该算法的基本思想是:在游戏树中, maxx节点将选择对自己最有利的下一个节点,而min节点将选择对自己最不利的下一个节点。通过这种方式,极大极小搜索算法可以找到游戏树中的最优解。 a-b剪枝策略 a-b剪枝策略是一...
recommend-type

字节跳动把Python入门知识点整理成手册了-背记手册,高清PDF下载

Python 作为一门易学且功能强大的编程语言,深受程序员喜爱。字节跳动的大佬们精心整理出的这本Python入门背记手册,旨在帮助初学者快速掌握Python的基础知识。手册涵盖了从语言基础到常用的编程概念,下面我们就...
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。