SRGAN详细伪代码
时间: 2023-12-20 14:12:59 浏览: 87
以下是SRGAN的详细伪代码:
1. 定义生成器和判别器的架构:
```
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# 定义生成器的架构
def forward(self, x):
# 生成高分辨率图像
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
# 定义判别器的架构
def forward(self, x):
# 评估生成器生成的图像
return x
```
2. 定义损失函数,包括对抗损失和内容损失:
```
adversarial_loss = nn.BCELoss()
content_loss = nn.MSELoss()
```
3. 加载训练数据和测试数据:
```
train_dataset = ...
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = ...
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
```
4. 定义优化器和学习率:
```
optimizer_G = optim.Adam(generator.parameters(), lr=lr)
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)
```
5. 训练生成器和判别器:
```
for epoch in range(num_epochs):
for i, (lr_imgs, hr_imgs) in enumerate(train_loader):
# 训练判别器
optimizer_D.zero_grad()
fake_hr_imgs = generator(lr_imgs)
real_labels = torch.ones(hr_imgs.size(0))
fake_labels = torch.zeros(hr_imgs.size(0))
real_loss = adversarial_loss(discriminator(hr_imgs), real_labels)
fake_loss = adversarial_loss(discriminator(fake_hr_imgs.detach()), fake_labels)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# 训练生成器
optimizer_G.zero_grad()
fake_hr_imgs = generator(lr_imgs)
real_labels = torch.ones(hr_imgs.size(0))
content_loss = content_loss(fake_hr_imgs, hr_imgs)
adversarial_loss = adversarial_loss(discriminator(fake_hr_imgs), real_labels)
g_loss = content_loss + lambda_adv * adversarial_loss
g_loss.backward()
optimizer_G.step()
```
其中,lambda_adv是对抗损失的权重。
6. 在测试集上评估生成器的性能:
```
generator.eval()
with torch.no_grad():
for i, (lr_imgs, hr_imgs) in enumerate(test_loader):
fake_hr_imgs = generator(lr_imgs)
# 评估生成器的性能
```
7. 保存生成器的权重:
```
torch.save(generator.state_dict(), 'generator.pth')
```
8. 使用生成器生成高质量的图像:
```
generator.load_state_dict(torch.load('generator.pth'))
generator.eval()
with torch.no_grad():
for i, lr_img in enumerate(lr_imgs):
fake_hr_img = generator(lr_img.unsqueeze(0))
# 保存生成的高质量图像
```
注意:以上伪代码仅供参考,实际实现可能会有更多细节和改进。
阅读全文