使用tensorflow实现多层神经网络分类鸢尾花任务: 根据右图设计的多层神经网络实现鸢尾花分类任务 提示: 1、隐含层神经元使用relu激活函数 2、输出层神经元使用softmax激活函数 3、W1为输入层与隐含层之间的权重参数,维度是一个二维的 张量(4,16);B1为输入层与隐含层之间的阈值参数,其维 度是一个一维的张量(16,) 。 4、W2为输入层与隐含层之间的权重参数,其维度是一个二维 的张量(16,3);B2为输入层与隐含层之间的阈值参数其维 度是一个一维的张量(3,) 。
时间: 2024-02-25 09:57:47 浏览: 73
好的,这是一个使用tensorflow实现多层神经网络分类鸢尾花任务的示例代码:
```python
import tensorflow as tf
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
import numpy as np
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target.reshape(-1, 1)
# One-hot编码
encoder = OneHotEncoder(sparse=False)
y = encoder.fit_transform(y)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 定义模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(16, activation='relu', input_shape=(4,)),
tf.keras.layers.Dense(3, activation='softmax')
])
# 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=16, verbose=0)
# 评估模型
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
print('Test accuracy:', accuracy)
```
其中,模型的定义采用了Sequential模型,分别使用Dense层来构建隐含层和输出层。在训练过程中,我们使用adam优化器和交叉熵损失函数来进行模型的优化,同时也输出了模型在测试集上的准确率。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![gz](https://img-home.csdnimg.cn/images/20210720083447.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![7z](https://img-home.csdnimg.cn/images/20241231044736.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)