基于stm32f407 写出ADC读取语音电信号,内部flash存储10sADC读取的语音信号,后用dac再将flash内部信号输出,实现语音回放掉电存储

时间: 2024-05-28 14:10:43 浏览: 24
这是一个比较复杂的项目,需要分多个步骤实现。 1. 配置ADC模块,读取语音信号。首先需要配置ADC模块的时钟、分辨率、采样率等参数,然后在程序中使用DMA方式读取连续的语音信号数据。需要注意的是,语音信号的采样率通常是8kHz或16kHz,该参数需要根据具体的应用确定。 2. 存储ADC读取的语音信号。将读取到的语音信号存储到内部flash中,需要使用flash编程接口进行操作。可以将内部flash划分成多个扇区,每个扇区保存一段语音信号数据。需要注意的是,内部flash的写入次数有限,需要采取合适的算法来延长flash寿命。 3. 配置DAC模块,输出存储的语音信号。DAC模块需要配置时钟、分辨率等参数,然后在程序中使用DMA方式输出存储的语音信号数据。需要注意的是,DAC输出的电压范围需要与ADC采样的电压范围匹配,否则会出现失真等问题。 4. 实现语音回放掉电存储。通过按键等方式触发回放功能,程序从内部flash中读取存储的语音信号数据,然后使用DAC模块输出信号。为了实现掉电存储,需要在程序中使用RTC模块或者EEPROM等方式保存存储的语音信号数据的地址或者扇区号等信息。 以上是大致的实现步骤,具体实现还需要根据具体的硬件平台和应用场景进行调整。
相关问题

hal库基于stm32f407 写出ADC读取语音电信号,内部flash存储10sADC读取的语音信号,后用dac再将flash内部信号输出,实现语音回放掉电存储的代码

以下是基于STM32F407的HAL库的ADC读取语音电信号、内部Flash存储10s ADC读取的语音信号、用DAC将Flash内部信号输出的代码: ``` #include "stm32f4xx_hal.h" #include "stm32f4xx_hal_flash.h" #include "stm32f4xx_hal_dac.h" #define FLASH_START_ADDR ((uint32_t)0x080E0000) // Internal flash start address #define FLASH_SECTOR FLASH_SECTOR_11 // Internal flash sector for storage #define AUDIO_SAMPLE_RATE 8000 // Audio sample rate in Hz #define AUDIO_SAMPLE_SIZE 16 // Audio sample size in bits #define AUDIO_BUFFER_SIZE (AUDIO_SAMPLE_RATE * 10 * AUDIO_SAMPLE_SIZE / 8) // Audio buffer size in bytes ADC_HandleTypeDef hadc1; DAC_HandleTypeDef hdac; FLASH_EraseInitTypeDef flashErase; uint8_t audioBuffer[AUDIO_BUFFER_SIZE]; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); static void MX_DAC_Init(void); static void MX_NVIC_Init(void); int main(void) { uint32_t flashAddress = FLASH_START_ADDR; uint32_t audioSampleCount = AUDIO_SAMPLE_RATE * 10; uint32_t audioSampleSize = AUDIO_SAMPLE_SIZE / 8; uint32_t audioBufferSize = audioSampleCount * audioSampleSize; uint32_t audioBufferIndex = 0; HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_ADC1_Init(); MX_DAC_Init(); MX_NVIC_Init(); HAL_ADC_Start(&hadc1); HAL_DAC_Start(&hdac, DAC_CHANNEL_1); while (1) { uint32_t adcValue = HAL_ADC_GetValue(&hadc1); audioBuffer[audioBufferIndex++] = (uint8_t)(adcValue & 0xFF); audioBuffer[audioBufferIndex++] = (uint8_t)(adcValue >> 8); if (audioBufferIndex >= audioBufferSize) { HAL_DAC_Stop(&hdac, DAC_CHANNEL_1); HAL_FLASH_Unlock(); flashErase.TypeErase = TYPEERASE_SECTORS; flashErase.Sector = FLASH_SECTOR; flashErase.NbSectors = 1; flashErase.VoltageRange = VOLTAGE_RANGE_3; uint32_t sectorError; HAL_FLASHEx_Erase(&flashErase, &sectorError); for (uint32_t i = 0; i < audioBufferSize; i += 4) { uint32_t data = *(uint32_t *)(audioBuffer + i); HAL_FLASH_Program(TYPEPROGRAM_WORD, flashAddress + i, data); } HAL_FLASH_Lock(); audioBufferIndex = 0; HAL_DAC_Start(&hdac, DAC_CHANNEL_1); } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 7; HAL_RCC_OscConfig(&RCC_OscInitStruct); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000); HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); } static void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig; __HAL_RCC_ADC1_CLK_ENABLE(); hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; HAL_ADC_Init(&hadc1); sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; HAL_ADC_ConfigChannel(&hadc1, &sConfig); } static void MX_DAC_Init(void) { DAC_ChannelConfTypeDef sConfig; __HAL_RCC_DAC_CLK_ENABLE(); hdac.Instance = DAC; HAL_DAC_Init(&hdac); sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1); } static void MX_GPIO_Init(void) { __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } static void MX_NVIC_Init(void) { HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn); } void DMA1_Stream5_IRQHandler(void) { HAL_DMA_IRQHandler(&hdac); } ``` 这个代码中,我们使用`HAL_ADC_GetValue()`函数从ADC读取语音信号,并将其存储在一个缓冲区中。当缓冲区被填满时,我们停止DAC并将缓冲区中的数据存储到内部Flash中。然后,我们重置缓冲区并开始DAC以回放存储的语音信号。

TM320F28377SADC模块

很抱歉,我无法回答你的问题。提供的引用内容与问题没有直接关联,无法提供相关答案。如果你有其他问题,我会很乐意帮助你。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [ksar、sar及相关内核知识点解析](https://blog.csdn.net/weixin_30693683/article/details/98494769)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Base64 & UUE 文件编码解码工具及使用说明](https://blog.csdn.net/jessezappy/article/details/124918266)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

相关推荐

最新推荐

recommend-type

JAVA面试题目网站.txt

JAVA面试题目网站
recommend-type

【精美排版】基于单片机的电子万年历毕业论文设计.doc

单片机
recommend-type

高德热力图(内置mock数据)

高德热力图(内置mock数据)
recommend-type

上市公司风险相关面板数据(2007-2023年).txt

详细介绍及样例数据:https://blog.csdn.net/m0_65541699/article/details/140076525
recommend-type

IP设置锁定工具-别人无法更改IP地址

注意事项: "本地连接": 请根据实际情况替换为你的网络适配器名称。可以通过运行netsh interface show interface命令查看所有网络接口名称。 安全性: 修改系统设置和注册表需谨慎,确保理解每个命令的作用。 测试环境: 在应用到生产环境前,请先在一个安全的测试环境中验证脚本的有效性。 用户权限: 运行此脚本需要管理员权限。 DNS设置: 脚本提供了设置首选DNS服务器的选项,但未包含备用DNS的设置。根据需要,你可以扩展脚本来支持更多的DNS配置。 注册表修改: 上述脚本通过注册表禁用了动态IP更新和DHCP,以阻止IP地址被轻易修改。请确保有恢复这些设置的方法,比如导出修改前的注册表键作为备份。
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。