new_data = pd.DataFrame({'Batch': batch, 'Data': data, 'Targets': targets}, index=[0])
时间: 2024-01-25 17:02:45 浏览: 62
As an AI language model, I do not have enough context to understand the purpose of this code snippet. However, based on the syntax, it seems like the code is creating a new pandas DataFrame called "new_data" with three columns: "Batch", "Data", and "Targets". The values for these columns are being passed as parameters to the DataFrame constructor using the "batch", "data", and "targets" variables. The DataFrame is then being assigned an index of 0.
相关问题
order_date sales_region_code item_code first_cate_code second_cate_code sales_chan_name item_price ord_qty 2016-03-15 101 20001 302 408 offline 700 102 2016-03-21 101 20001 302 408 offline 705 19 2016-03-23 101 20001 302 408 offline 702 36 2016-03-24 101 20001 302 408 offline 692 204 2016-03-25 101 20001 302 408 offline 693 36 2016-05-06 101 20001 302 408 offline 707 305 2016-05-09 101 20001 302 408 offline 709 206 2017-08-04 101 20002 303 406 offline 1958 4 2018-03-14 101 20002 303 406 offline 2166 2 2018-03-16 101 20002 303 406 offline 2466 3 2018-03-25 101 20002 303 406 offline 2453 3 2018-03-31 101 20002 303 406 offline 2462 9 以上数据是excel表格,你能都出来吗 上表表格保存在test.xlsx文件:order_date(订单日期,注:订单日期从2015 年 9 月 1日至 2018 年 12 月 20 日)、sales_region_code(销售区域编码)、item_code(产品编码)、first_cate_code (产品大类编码)、second_cate_code (产品细类编码)、sales_chan_name (销售渠道名称)、item_price (产品价格)和 ord_qty (订单需求量) 希望给出下列描述的python代码。 读入表格,将数据转为模型可用的格式。 训练集与测试集的数据要转换成模型可使用的数据格式,数据维度要与模型的输入相匹配。 使用tensorflow创建多层卷积与多层lstm相结合的模型,其训练数据为相同的产品编码,对应的订单日期,对应的订单需求量。然后进行模型训练 模型训练完成后,对不同的产品编码预测其在2019年1月至3月每月的订单需求量。 需要将信息保存在result.xlsx表格中,其中应包含以下数据,产品编码,和对应的2019年1月订单需求量,2019年2月的需求量,2019年3月的需求量。
抱歉,作为AI,我没有能力读取外部表格。这个问题需要使用Python相关的库进行处理。以下是参考代码:
```python
import pandas as pd
import numpy as np
import tensorflow as tf
# 读入表格
df = pd.read_excel('test.xlsx')
# 转换为模型可用的格式
def convert_to_model_format(df):
# 将日期转换为时间戳
df['timestamp'] = pd.to_datetime(df['order_date']).astype(np.int64) // 10**9
# One-hot编码
df = pd.get_dummies(df, columns=['sales_region_code', 'first_cate_code',
'second_cate_code', 'sales_chan_name'])
# 取出需要的列
df = df[['item_code', 'timestamp', 'ord_qty'] + list(df.columns[8:])]
# 按照同一产品编码进行分组
groups = df.groupby('item_code')
# 将每个分组转换为模型可用的格式
result = []
for _, group in groups:
sequences = []
targets = []
for i in range(49, len(group)):
sequences.append(group.iloc[i-49:i, 2:].values)
targets.append(group.iloc[i, 2])
result.append((np.array(sequences), np.array(targets)))
return result
data = convert_to_model_format(df)
# 创建模型
def create_model():
inputs = tf.keras.layers.Input(shape=(49, 267))
conv = inputs
for i in range(3):
conv = tf.keras.layers.Conv1D(filters=64, kernel_size=3, activation='relu')(conv)
lstm = tf.keras.layers.LSTM(units=128)(conv)
dense = tf.keras.layers.Dense(units=64, activation='relu')(lstm)
outputs = tf.keras.layers.Dense(units=1)(dense)
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
model = create_model()
# 训练模型
for x_train, y_train in data:
model.train_on_batch(x_train, y_train)
# 预测
def predict(model, item_code):
# 构造测试数据
dates = pd.date_range(start='2019-01-01', end='2019-03-31', freq='MS').astype(np.int64) // 10**9
df_test = pd.DataFrame({'timestamp': dates})
df_test['item_code'] = item_code
df_test = pd.get_dummies(df_test, columns=['item_code'])
test_data = df_test.drop(columns=['timestamp']).values
x_test = np.zeros(shape=(len(test_data) - 49, 49, 267))
for i in range(49, len(test_data)):
x_test[i-49] = np.concatenate([test_data[i-49:i], np.zeros(shape=(49 - 1, 267))])
y_pred = model.predict(x_test).flatten().tolist()
return y_pred
# 预测并保存
result = pd.DataFrame({'item_code': df['item_code'].unique()})
result['201901'] = result['item_code'].apply(lambda x: predict(model, x)[0])
result['201902'] = result['item_code'].apply(lambda x: predict(model, x)[1])
result['201903'] = result['item_code'].apply(lambda x: predict(model, x)[2])
result.to_excel('result.xlsx', index=False)
```
请注意,这只是一个简单的参考代码,具体实现可能需要根据数据情况进行修改。
有一个DataFrame名叫Data,它有列time_id、veh_n、v_avg,其中 time_id 表示的是时间序列(整数),veh_n 是车辆数(整数),v_avg 是车辆平均速度(float)。我希望你能帮我写一个 LSTM 的代码,输入是 time_id、veh_n、v_avg,预测得到的结果是veh_n,v_avg,预测步长为2。
好的,我可以帮你写一个基于 PyTorch 的 LSTM 模型来进行预测。以下是代码示例:
```python
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
# 加载数据
data = pd.read_csv('data.csv')
n_features = 3 # 特征个数
# 将数据划分为训练集和测试集
test_size = int(len(data) * 0.2) # 测试集占比为20%
train_data = data[:-test_size]
test_data = data[-test_size:]
# 将数据转换成LSTM模型的输入格式
def create_dataset(X, y, time_steps=1):
Xs, ys = [], []
for i in range(len(X) - time_steps):
Xs.append(X.iloc[i:(i+time_steps)].values)
ys.append(y.iloc[i+time_steps])
return np.array(Xs), np.array(ys)
time_steps = 2 # 预测步长为2,即输入2个时间序列预测未来2个时间序列的车辆数和平均速度
X_train, y_train = create_dataset(train_data[['time_id', 'veh_n', 'v_avg']], train_data[['veh_n', 'v_avg']], time_steps)
X_test, y_test = create_dataset(test_data[['time_id', 'veh_n', 'v_avg']], test_data[['veh_n', 'v_avg']], time_steps)
# 定义LSTM模型
class LSTM(nn.Module):
def __init__(self, n_features, hidden_size, time_steps):
super(LSTM, self).__init__()
self.n_features = n_features
self.hidden_size = hidden_size
self.time_steps = time_steps
self.lstm = nn.LSTM(n_features, hidden_size, batch_first=True)
self.fc1 = nn.Linear(hidden_size * time_steps, 32)
self.fc2 = nn.Linear(32, 2)
def forward(self, x):
h0 = torch.zeros(1, x.size(0), self.hidden_size)
c0 = torch.zeros(1, x.size(0), self.hidden_size)
out, _ = self.lstm(x, (h0, c0))
out = out.reshape(out.size(0), -1)
out = self.fc1(out)
out = torch.relu(out)
out = self.fc2(out)
return out
# 训练LSTM模型
hidden_size = 32 # 隐藏层神经元数目
learning_rate = 0.001
n_epochs = 100
model = LSTM(n_features, hidden_size, time_steps)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(n_epochs):
inputs = torch.autograd.Variable(torch.Tensor(X_train))
targets = torch.autograd.Variable(torch.Tensor(y_train))
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print(f'Epoch {epoch+1}/{n_epochs}, Loss: {loss.item():.4f}')
# 测试LSTM模型
model.eval()
X_test = torch.Tensor(X_test)
y_pred = model(X_test)
# 将预测结果转换为DataFrame格式
y_pred = y_pred.detach().numpy()
y_test = y_test.reshape(-1, 2)
y_pred = pd.DataFrame(y_pred, columns=['veh_n', 'v_avg'])
y_test = pd.DataFrame(y_test, columns=['veh_n', 'v_avg'])
# 输出预测结果
print("Actual:")
print(y_test)
print("Predicted:")
print(y_pred)
```
注意,以上代码只是一个示例,实际应用中可能需要对模型进行更多的调整和优化,以达到更好的预测效果。
阅读全文