gan图像风格迁移代码
时间: 2023-10-22 18:04:29 浏览: 125
基于CycleGAN实现图像风格迁移
GAN 图像风格迁移是一种利用生成对抗网络(GAN)实现的图像风格变换技术。下面是一个使用 TensorFlow 实现 GAN 图像风格迁移的示例代码:
```python
import tensorflow as tf
import numpy as np
import argparse
import os
import sys
import time
import datetime
import random
import cv2
def build_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='model.ckpt', help='Model checkpoint to load')
parser.add_argument('--input_img', type=str, help='Input image file path')
parser.add_argument('--output_img', type=str, help='Output image file path')
parser.add_argument('--style_img', type=str, help='Style image file path')
parser.add_argument('--content_weight', type=float, default=1.0, help='Weight of content loss')
parser.add_argument('--style_weight', type=float, default=5.0, help='Weight of style loss')
parser.add_argument('--tv_weight', type=float, default=1e-3, help='Weight of total variation loss')
parser.add_argument('--learning_rate', type=float, default=1e-3, help='Learning rate')
parser.add_argument('--num_iters', type=int, default=1000, help='Number of iterations')
parser.add_argument('--save_every', type=int, default=100, help='Save checkpoint every N iterations')
parser.add_argument('--print_every', type=int, default=10, help='Print loss every N iterations')
parser.add_argument('--gpu', type=int, default=0, help='GPU device ID')
return parser
def build_vgg19(input_tensor):
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet', input_tensor=input_tensor)
vgg.outputs = [vgg.layers[9].output, vgg.layers[13].output, vgg.layers[17].output, vgg.layers[21].output]
return vgg
def gram_matrix(x):
features = tf.keras.backend.batch_flatten(tf.keras.backend.permute_dimensions(x, (2, 0, 1)))
gram = tf.keras.backend.dot(features, tf.keras.backend.transpose(features))
return gram
def content_loss(content, generated):
return tf.reduce_mean(tf.square(content - generated))
def style_loss(style, generated):
S = gram_matrix(style)
G = gram_matrix(generated)
channels = 3
size = 256 * 256
return tf.reduce_mean(tf.square(S - G)) / (4. * (channels ** 2) * (size ** 2))
def total_variation_loss(x):
a = tf.square(x[:, :255, :255, :] - x[:, 1:, :255, :])
b = tf.square(x[:, :255, :255, :] - x[:, :255, 1:, :])
return tf.reduce_mean(tf.pow(a + b, 1.25))
def build_model(content, style, generated):
content_loss_val = content_loss(content, generated)
style_loss_val = style_loss(style, generated)
tv_loss_val = total_variation_loss(generated)
loss = args.content_weight * content_loss_val + args.style_weight * style_loss_val + args.tv_weight * tv_loss_val
optimizer = tf.train.AdamOptimizer(args.learning_rate).minimize(loss)
return loss, optimizer
def preprocess_img(img):
img = cv2.resize(img, (256, 256))
img = img.astype(np.float32) / 255.0
img = np.expand_dims(img, axis=0)
return img
def postprocess_img(img):
img = np.squeeze(img, axis=0)
img = np.clip(img * 255.0, 0, 255).astype(np.uint8)
return img
def main(args):
# Set GPU device
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
# Create session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# Build VGG19 model
input_tensor = tf.placeholder(tf.float32, shape=(None, 256, 256, 3))
vgg = build_vgg19(input_tensor)
# Load images
content_img = cv2.imread(args.input_img)
style_img = cv2.imread(args.style_img)
# Preprocess images
content_img = preprocess_img(content_img)
style_img = preprocess_img(style_img)
# Build model
content_tensor = vgg(input_tensor)[0]
style_tensors = [vgg(style_img)[i] for i in range(4)]
generated_tensor = tf.Variable(content_img, dtype=tf.float32)
loss_op, optimizer_op = build_model(content_tensor, style_tensors, generated_tensor)
# Load checkpoint
saver = tf.train.Saver()
saver.restore(sess, args.model)
# Train model
for i in range(args.num_iters):
_, loss_val = sess.run([optimizer_op, loss_op])
if i % args.print_every == 0:
print('[{:04d}/{:04d}] loss = {:.4f}'.format(i+1, args.num_iters, loss_val))
if i % args.save_every == 0:
saver.save(sess, args.model)
generated_img = sess.run(generated_tensor)
generated_img = postprocess_img(generated_img)
cv2.imwrite(args.output_img, generated_img)
# Save final result
saver.save(sess, args.model)
generated_img = sess.run(generated_tensor)
generated_img = postprocess_img(generated_img)
cv2.imwrite(args.output_img, generated_img)
if __name__ == '__main__':
parser = build_parser()
args = parser.parse_args()
main(args)
```
使用方法:
1. 下载并安装 TensorFlow。
2. 下载预训练的 VGG19 模型([vgg19.npy](https://github.com/machrisaa/tensorflow-vgg/blob/master/vgg19.npy))并将其放在代码所在目录下。
3. 执行以下命令:
```bash
python gan_image_style_transfer.py --input_img input.jpg --output_img output.jpg --style_img style.jpg
```
其中 `input.jpg` 是输入图像,`style.jpg` 是风格图像,`output.jpg` 是输出图像。可以通过调整命令行参数来改变模型训练的参数和行为。
阅读全文