上面没有用ECOC分类策略,要用ECOC分类策略
时间: 2024-02-23 14:00:18 浏览: 57
非常抱歉,我理解有误。以下是使用 ECOC 分类策略的代码示例:
```python
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OutputCodeClassifier
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import numpy as np
iris = load_iris()
X = iris.data[:, :2]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
clf = OutputCodeClassifier(LogisticRegression())
clf.fit(X_train, y_train)
y_train_pred = clf.predict(X_train)
y_test_pred = clf.predict(X_test)
train_acc = accuracy_score(y_train, y_train_pred)
test_acc = accuracy_score(y_test, y_test_pred)
print("Train accuracy: ", train_acc)
print("Test accuracy: ", test_acc)
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(6, 4))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.show()
```
其中,我们使用了 `OutputCodeClassifier` 类,它通过构造多个二分类器来实现多类别分类,每个二分类器将多个类别编码成一个二进制编码。这里的 ECOC 分类策略指的是使用输出编码来进行多类别分类。
希望这次回答能够满足您的要求。
阅读全文