在mmdetection第二代中如何在FCOS中使用CBAM
时间: 2024-05-03 17:17:05 浏览: 221
FCOS.Pytorch:pytorch1.x中的fcos实现
在mmdetection第二代中,可以通过修改FCOS的backbone网络来使用CBAM。具体步骤如下:
1. 在mmdet/models/backbones/resnet.py中导入CBAM模块:
```python
from ..plugins.cbam import CBAM
```
2. 在ResNet的构造函数中,实例化CBAM模块,并将其添加到每个ResNet block中。例如,在ResNet50中,可以添加以下代码:
```python
self.cbam = CBAM(channels=256)
```
```python
for i, block in enumerate(self.layers):
if i == 0:
block.cbam = None
else:
block.cbam = copy.deepcopy(self.cbam)
```
3. 在FCOS的构造函数中,将修改后的ResNet作为backbone网络:
```python
self.backbone = ResNet(
depth=self.backbone_depth,
num_stages=4,
strides=(1, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_indices=(0, 1, 2, 3),
frozen_stages=self.frozen_stages,
norm_cfg=self.norm_cfg,
norm_eval=self.train_cfg.get('norm_eval', True),
style='pytorch',
with_cbam=True # 添加这行代码
)
```
4. 在mmdet/models/plugins/cbam.py中实现CBAM模块:
```python
import torch.nn as nn
import torch.nn.functional as F
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, channels, reduction=16):
super(CBAM, self).__init__()
self.ca = ChannelAttention(channels, reduction)
self.sa = SpatialAttention()
def forward(self, x):
out = x * self.ca(x)
out = out * self.sa(out)
return out
```
通过以上步骤,就可以在FCOS中使用CBAM了。需要注意的是,以上代码仅适用于具有ResNet backbone的FCOS模型。如果使用其他的backbone网络,需要进行相应的修改。
阅读全文