1.了解朴素贝叶斯算法的基本原理,用python代码实现 2.能够使用朴素贝叶斯算法对数据进行分类 ,用python代码实现 3.了解最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器 ,用python代码实现 4.学会对于分类器的性能评估方法,用python代码实现
时间: 2024-03-25 12:40:42 浏览: 72
好的,我会逐一回答您的问题,并提供相应的Python代码实现。
1. 朴素贝叶斯算法的基本原理,用Python代码实现
以下是一个简单的朴素贝叶斯分类器的Python代码实现,用于分类鸢尾花数据集。
```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
class NaiveBayes:
def __init__(self):
self.phi_y = None
self.phi_x_y = None
self.classes = None
def fit(self, X, y):
self.classes = np.unique(y)
n_samples, n_features = X.shape
n_classes = len(self.classes)
self.phi_y = np.zeros(n_classes)
self.phi_x_y = np.zeros((n_classes, n_features))
for i, c in enumerate(self.classes):
X_i = X[y == c]
self.phi_y[i] = len(X_i) / n_samples
self.phi_x_y[i, :] = (np.sum(X_i, axis=0) + 1) / (len(X_i) + 2)
def predict(self, X):
probs = np.zeros((X.shape[0], len(self.classes)))
for i, c in enumerate(self.classes):
probs[:, i] = np.log(self.phi_y[i]) + np.sum(np.log(self.phi_x_y[i, :][None, :] ** X), axis=1)
return self.classes[np.argmax(probs, axis=1)]
# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# 初始化朴素贝叶斯分类器
nb = NaiveBayes()
# 训练模型
nb.fit(X_train, y_train)
# 预测测试集
y_pred = nb.predict(X_test)
# 计算准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
```
2. 使用朴素贝叶斯算法对数据进行分类,用Python代码实现
以下是使用朴素贝叶斯分类器对鸢尾花数据集进行分类的Python代码实现。
```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# 初始化朴素贝叶斯分类器
nb = GaussianNB()
# 训练模型
nb.fit(X_train, y_train)
# 预测测试集
y_pred = nb.predict(X_test)
# 计算准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
```
3. 最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器,用Python代码实现
以下是最小错误概率贝叶斯分类器和最小风险概率贝叶斯分类器的Python代码实现,用于分类鸢尾花数据集。
最小错误概率贝叶斯分类器:
```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# 初始化朴素贝叶斯分类器
nb = GaussianNB()
# 训练模型
nb.fit(X_train, y_train)
# 预测测试集
y_pred = nb.predict(X_test)
# 计算准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
```
最小风险概率贝叶斯分类器:
```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# 初始化朴素贝叶斯分类器
nb = GaussianNB()
# 训练模型
nb.fit(X_train, y_train)
# 预测测试集
y_pred = nb.predict(X_test)
# 计算各个类别的代价(或风险)
cost = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]])
# 计算各个类别的期望代价
expected_cost = np.dot(nb.predict_proba(X_test), cost.T)
# 预测测试集,并选择期望代价最小的类别
y_pred = np.argmin(expected_cost, axis=1)
# 计算准确率
accuracy = np.mean(y_pred == y_test)
print("Accuracy:", accuracy)
```
4. 对于分类器的性能评估方法,用Python代码实现
以下是使用Python代码实现准确率、召回率、F1值、ROC曲线和AUC的示例代码,用于分类鸢尾花数据集。
```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_curve, auc
# 加载鸢尾花数据集
iris = load_iris()
X, y = iris.data, iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# 初始化朴素贝叶斯分类器
nb = GaussianNB()
# 训练模型
nb.fit(X_train, y_train)
# 预测测试集
y_pred = nb.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
# 计算召回率
recall = recall_score(y_test, y_pred, average='weighted')
print("Recall:", recall)
# 计算F1值
f1 = f1_score(y_test, y_pred, average='weighted')
print("F1:", f1)
# 计算ROC曲线和AUC
probs = nb.predict_proba(X_test)
fpr, tpr, thresholds = roc_curve(y_test, probs[:, 1], pos_label=1)
auc_score = auc(fpr, tpr)
print("AUC:", auc_score)
```
阅读全文