matlab 提取翻转梅尔频率倒谱系数MFCC代码
时间: 2023-08-15 14:05:00 浏览: 252
以下是在Matlab中提取翻转梅尔频率倒谱系数(MFCC)的示例代码:
```matlab
% 读取音频文件
[y, Fs] = audioread('example.wav');
% 预处理:对信号进行预加重,使用高通滤波器
preemph = [1, -0.97];
y = filter(preemph, 1, y);
% 帧分割:将信号分为若干个帧
frame_size = 0.025; % 帧长(单位:秒)
frame_shift = 0.01; % 帧移(单位:秒)
frame_length = frame_size * Fs; % 帧长(单位:采样点)
frame_step = frame_shift * Fs; % 帧移(单位:采样点)
num_frames = floor((length(y) - frame_length) / frame_step) + 1;
frames = zeros(frame_length, num_frames);
for i = 1:num_frames
start_idx = (i-1) * frame_step + 1;
frames(:, i) = y(start_idx : start_idx + frame_length - 1);
end
% 加窗:对每个帧进行汉明窗加窗
window = hamming(frame_length);
frames = bsxfun(@times, frames, window);
% 快速傅里叶变换:对每个帧进行FFT计算
NFFT = 512;
fft_frames = fft(frames, NFFT, 1);
% 能量谱:计算每个帧的能量谱
power_frames = abs(fft_frames).^2 / NFFT;
% 梅尔滤波器组:计算梅尔滤波器组的系数
num_filters = 20;
mel_low_freq = 0; % 梅尔滤波器组的最低频率
mel_high_freq = 2595 * log10(1 + (Fs/2) / 700); % 梅尔滤波器组的最高频率
mel_points = linspace(mel_low_freq, mel_high_freq, num_filters + 2);
hz_points = 700 * (10.^(mel_points / 2595) - 1);
bin = floor((NFFT + 1) * hz_points / Fs);
fbank = zeros(num_filters, NFFT / 2 + 1);
for m = 1:num_filters
f_m_minus = bin(m);
f_m = bin(m+1);
f_m_plus = bin(m+2);
for k = f_m_minus:f_m
fbank(m, k+1) = (k - bin(m)) / (bin(m+1) - bin(m));
end
for k = f_m:f_m_plus
fbank(m, k+1) = (bin(m+2) - k) / (bin(m+2) - bin(m+1));
end
end
% 翻转梅尔频率倒谱系数:计算每个帧的MFCC
num_ceps = 12;
mfcc = zeros(num_ceps, num_frames);
for i = 1:num_frames
% 将能量谱乘以梅尔滤波器组的系数,得到每个滤波器的输出能量
filter_energies = fbank * power_frames(:, i);
% 取对数,得到滤波器组的对数输出能量
log_filter_energies = log(filter_energies + eps);
% 对上面的对数输出能量进行离散余弦变换(DCT)
mfcc(:, i) = dct(log_filter_energies);
% 取前 num_ceps 个系数作为MFCC
mfcc(:, i) = mfcc(1:num_ceps, i);
end
% 翻转MFCC:对每个MFCC向量进行翻转
rfcc = flipud(mfcc);
```
以上代码中,翻转MFCC的操作是通过 `flipud` 函数实现的。
阅读全文