写一段DQN训练Hero-ram-v0的代码
时间: 2023-12-29 21:02:28 浏览: 99
深度强化学习+DQN+Pytorch+CartPole-v0
5星 · 资源好评率100%
下面是一个使用深度强化学习(DQN)算法训练 OpenAI Gym 中的 `Hero-ram-v0` 环境的示例代码:
```python
import gym
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
# 创建 DQN 模型
def create_model(state_shape, action_size):
model = Sequential()
model.add(Dense(24, input_shape=state_shape, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(learning_rate=0.001))
return model
# 初始化经验回放缓冲区
class ReplayBuffer:
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.buffer = []
def add(self, experience):
self.buffer.append(experience)
if len(self.buffer) > self.buffer_size:
self.buffer.pop(0)
def sample(self, batch_size):
return np.random.choice(self.buffer, batch_size)
# DQN Agent
class DQNAgent:
def __init__(self, state_shape, action_size, buffer_size):
self.state_shape = state_shape
self.action_size = action_size
self.buffer = ReplayBuffer(buffer_size)
self.model = create_model(state_shape, action_size)
def act(self, state):
state = np.expand_dims(state, axis=0)
q_values = self.model.predict(state)[0]
action = np.argmax(q_values)
return action
def train(self, batch_size, gamma):
minibatch = self.buffer.sample(batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
next_state = np.expand_dims(next_state, axis=0)
target = reward + gamma * np.amax(self.model.predict(next_state)[0])
state = np.expand_dims(state, axis=0)
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
def remember(self, state, action, reward, next_state, done):
experience = (state, action, reward, next_state, done)
self.buffer.add(experience)
# 创建环境和 agent
env = gym.make('Hero-ram-v0')
state_shape = env.observation_space.shape
action_size = env.action_space.n
agent = DQNAgent(state_shape, action_size, buffer_size=1000)
# 训练 DQN agent
num_episodes = 1000
batch_size = 32
gamma = 0.99
for episode in range(num_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
agent.remember(state, action, reward, next_state, done)
state = next_state
total_reward += reward
if len(agent.buffer.buffer) > batch_size:
agent.train(batch_size, gamma)
print(f"Episode: {episode+1}, Reward: {total_reward}")
# 使用训练好的 agent 进行测试
num_test_episodes = 10
for episode in range(num_test_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
action = agent.act(state)
state, reward, done, _ = env.step(action)
total_reward += reward
print(f"Test Episode: {episode+1}, Reward: {total_reward}")
```
请确保已经安装了 Gym、NumPy 和 TensorFlow 库。该代码使用一个简单的神经网络作为 DQN 的近似函数,并使用经验回放缓冲区来存储和重放过去的经验。在训练过程中,agent 与环境交互,并使用 Q-learning 更新网络权重。最后,代码还提供了一个简单的测试环节,用于评估训练好的 agent 在环境中的性能。
阅读全文