遗传算法解决八数码问题MATALB
时间: 2024-12-26 20:27:27 浏览: 5
### 使用MATLAB实现遗传算法解决八数码问题
#### 1. 定义适应度函数
为了评估每个个体的表现,定义一个适应度函数来计算当前状态与目标状态之间的差异。通常采用曼哈顿距离作为衡量标准。
```matlab
function fitness = calculateFitness(individual)
goalState = [1, 2, 3; 4, 5, 6; 7, 8, 0]; % 目标状态
currentState = reshape(individual, 3, 3);
[~, idxGoal] = find(goalState); % 获取目标位置索引
[~, idxCurrent] = find(currentState); % 获取当前位置索引
rowDiff = abs(idxGoal(1) - idxCurrent(1));
colDiff = abs(idxGoal(2) - idxCurrent(2));
fitness = sum(rowDiff(:)) + sum(colDiff(:)); % 曼哈顿距离之和
end
```
#### 2. 初始化种群
创建初始种群,随机生成多个可能的状态组合,并确保这些状态合法(即不重复且包含空白格)。
```matlab
function population = initializePopulation(popSize)
population = zeros(popSize, 9);
for i = 1:popSize
temp = randperm(9)-1;
while ~isSolvable(temp) || any(sum(abs(diff(sortrows([temp;population])), [], 2))==0)
temp = randperm(9)-1;
end
population(i,:) = temp;
end
end
```
#### 3. 实现交叉操作
通过交换两个父代的部分基因片段形成新的子代个体。
```matlab
function offspring = crossover(parents)
point = randi([2, length(parents)/2]);
offspring = parents;
offspring(:,point:end) = fliplr(offspring(:,point:end));
end
```
#### 4. 进行变异操作
以一定概率改变某些位上的数值,引入多样性。
```matlab
function mutatedIndividual = mutate(individual, mutationRate)
nGenes = numel(individual);
mask = rand(size(individual)) < mutationRate;
swapIndices = find(mask & individual ~= 0);
numSwaps = min(length(swapIndices), floor(nGenes * mutationRate));
if numSwaps > 0
indicesToSwap = datasample(swapIndices, numSwaps);
shuffledValues = individual(indicesToSwap(randperm(numSwaps)));
individual(indicesToSwap) = shuffledValues;
end
mutatedIndividual = individual;
end
```
#### 5. 主循环逻辑
迭代执行选择、交叉、变异等过程直到找到最优解或达到最大迭代次数为止。
```matlab
maxGenerations = 1e3;
mutationRate = 0.01;
populationSize = 100;
% Initialize the first generation of solutions.
currentGeneration = initializePopulation(populationSize);
for gen = 1:maxGenerations
% Evaluate all individuals' fitness values.
scores = arrayfun(@calculateFitness, currentGeneration)';
% Select top performers as parents based on their fitness score.
[~, sortedIdx] = sort(scores);
eliteCount = round(eliteRatio*length(sortedIdx));
elites = currentGeneration(sortedIdx(1:eliteCount), :);
nextGeneration = [];
while size(nextGeneration, 1) < populationSize - eliteCount
parentPair = randsample(currentGeneration, 2, false);
child = crossover(parentPair');
% Apply mutations to introduce variation into children.
childMutated = mutate(child', mutationRate);
nextGeneration(end+1, :) = childMutated';
end
% Combine elites with newly generated offsprings.
currentGeneration = [elites; nextGeneration];
bestScoreThisGen = min(scores);
fprintf('Generation #%d Best Fitness Score=%.2f\n', gen, bestScoreThisGen);
if bestScoreThisGen == 0
break;
end
end
```
阅读全文