c++红枣Delaunay三角剖分算法代码
时间: 2023-10-03 15:08:21 浏览: 97
用c++实现Delaunay三角剖分.pdf
下面是一个基于C++的红枣Delaunay三角剖分算法的代码示例:
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
struct Point {
double x, y;
};
struct Triangle {
Point p1, p2, p3;
};
double cross_product(Point p1, Point p2, Point p3) {
return (p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y);
}
bool in_circle(Point p, Triangle tri) {
double d1 = (p.x - tri.p1.x) * (p.x - tri.p1.x) + (p.y - tri.p1.y) * (p.y - tri.p1.y);
double d2 = (p.x - tri.p2.x) * (p.x - tri.p2.x) + (p.y - tri.p2.y) * (p.y - tri.p2.y);
double d3 = (p.x - tri.p3.x) * (p.x - tri.p3.x) + (p.y - tri.p3.y) * (p.y - tri.p3.y);
double det = tri.p1.x * (tri.p2.y * tri.p3.y - tri.p3.y * tri.p2.y)
- tri.p2.x * (tri.p1.y * tri.p3.y - tri.p3.x * tri.p1.y)
+ tri.p3.x * (tri.p1.y * tri.p2.y - tri.p2.x * tri.p1.y);
if (det == 0.0) {
return false; // The points are collinear, can't form a circle
}
double xc = (d1 * (tri.p2.y * tri.p3.y - tri.p3.y * tri.p2.y)
- d2 * (tri.p1.y * tri.p3.y - tri.p3.x * tri.p1.y)
+ d3 * (tri.p1.y * tri.p2.y - tri.p2.x * tri.p1.y)) / (2 * det);
double yc = (tri.p1.x * (d2 * tri.p3.y - d3 * tri.p2.y)
- tri.p2.x * (d1 * tri.p3.y - d3 * tri.p1.y)
+ tri.p3.x * (d1 * tri.p2.y - d2 * tri.p1.y)) / (2 * det);
double r = std::sqrt((xc - p.x) * (xc - p.x) + (yc - p.y) * (yc - p.y));
return r <= std::max(std::max(d1, d2), d3);
}
std::vector<Triangle> delaunay_triangulation(std::vector<Point>& points) {
std::vector<Triangle> triangles;
Triangle super_tri = {
{ -1e6, -1e6 }, // Super triangle vertices
{ 1e6, -1e6 },
{ 0, 1e6 }
};
triangles.push_back(super_tri);
for (const auto& p : points) {
std::vector<Triangle> invalid_triangles;
for (const auto& tri : triangles) {
if (in_circle(p, tri)) {
invalid_triangles.push_back(tri);
}
}
std::vector<Edge> polygon_edges;
for (const auto& tri : invalid_triangles) {
polygon_edges.push_back({ tri.p1, tri.p2 });
polygon_edges.push_back({ tri.p2, tri.p3 });
polygon_edges.push_back({ tri.p3, tri.p1 });
}
triangles.erase(std::remove_if(triangles.begin(), triangles.end(),
[&](const Triangle& tri) {
return std::find(invalid_triangles.begin(),
invalid_triangles.end(), tri) != invalid_triangles.end();
}),
triangles.end());
for (const auto& edge : polygon_edges) {
triangles.push_back({ edge.p1, edge.p2, p });
}
}
triangles.erase(std::remove_if(triangles.begin(), triangles.end(),
[&](const Triangle& tri) {
return tri.p1 == super_tri.p1 ||
tri.p1 == super_tri.p2 ||
tri.p1 == super_tri.p3 ||
tri.p2 == super_tri.p1 ||
tri.p2 == super_tri.p2 ||
tri.p2 == super_tri.p3 ||
tri.p3 == super_tri.p1 ||
tri.p3 == super_tri.p2 ||
tri.p3 == super_tri.p3;
}),
triangles.end());
return triangles;
}
int main() {
std::vector<Point> points = { { 0, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 }, { 0.5, 0.5 } };
std::vector<Triangle> triangles = delaunay_triangulation(points);
for (const auto& tri : triangles) {
std::cout << "(" << tri.p1.x << ", " << tri.p1.y << "), "
<< "(" << tri.p2.x << ", " << tri.p2.y << "), "
<< "(" << tri.p3.x << ", " << tri.p3.y << ")" << std::endl;
}
return 0;
}
```
这段代码实现了基于红枣Delaunay三角剖分算法的三角剖分过程。它首先定义了点和三角形的数据结构,并实现了计算叉积和判断点是否在三角形外接圆内的函数。然后,通过遍历所有点,进行三角形的插入和删除,最后得到剖分后的三角形集合。在主函数中,我们提供了一个简单的测试例子,用于演示该算法的使用。
注意:这只是一个简单的示例代码,并未考虑一些特殊情况和性能优化,仅供参考。实际应用中,可能需要根据具体需求进行适当的修改和优化。
阅读全文