if(local_point_id+keep_point+chang_lane_point<x_orignal.size()) { local_x.assign(x_orignal.begin()+local_point_id,x_orignal.begin()+local_point_id+keep_point+1); local_y.assign(y_orignal.begin()+local_point_id,y_orignal.begin()+local_point_id+keep_point+1); local_yaw.assign(yaw_orignal.begin()+local_point_id,yaw_orignal.begin()+local_point_id+keep_point); for (unsigned int i = 0; i < int(chang_lane_point/2); i++) { double local_xx=(i+1)*abs(x_average); double local_yy=(local_axis_point[1]/abs(local_axis_point[1]))*(i+1)*abs(x_average) * tan(change_rate_angle*(i+1)); local_x.push_back(local_xx*cos(yaw_orignal[local_point_id+keep_point])-local_yy*sin(yaw_orignal[local_point_id+keep_point])+x_orignal[local_point_id+keep_point]); local_y.push_back(local_xx*sin(yaw_orignal[local_point_id+keep_point])+local_yy*cos(yaw_orignal[local_point_id+keep_point])+y_orignal[local_point_id+keep_point]); local_yaw.push_back(change_rate_angle*(i+1)); } local_x.push_back(local_axis_point[0]/2*cos(yaw_orignal[local_point_id+keep_point])-local_axis_point[1]/2*sin(yaw_orignal[local_point_id+keep_point])+x_orignal[local_point_id+keep_point] ); local_y.push_back(local_axis_point[0]/2*sin(yaw_orignal[local_point_id+keep_point])+local_axis_point[1]/2*cos(yaw_orignal[local_point_id+keep_point])+y_orignal[local_point_id+keep_point] ); local_yaw.push_back(change_rate_angle*12); for (unsigned int i = 0; i < int(chang_lane_point/2); i++) { double local_xx_2=local_axis_point[0]-(int(chang_lane_point/2)-i)*abs(x_average); double local_yy_2=local_axis_point[1]-(local_axis_point[1]/abs(local_axis_point[1]))*(int(chang_lane_point/2)-i)*abs(x_average) * tan((change_rate_angle*(int(chang_lane_point/2)-i))); local_x.push_back(local_xx_2*cos(yaw_orignal[local_point_id+keep_point] )-local_yy_2*sin(yaw_orignal[local_point_id+keep_point] )+x_orignal[local_point_id+keep_point]); local_y.push_back(local_xx_2*sin(yaw_orignal[local_point_id+keep_point] )+local_yy_2*cos(yaw_orignal[local_point_id+keep_point] )+y_orignal[local_point_id+keep_point]); local_yaw.push_back(change_rate_angle*(int(chang_lane_point/2)-i)); } if(keep_point+chang_lane_point<local_path_size) { local_x.insert(local_x.end(),x_target.begin()+local_point_id+keep_point+chang_lane_point,x_target.begin()+(local_path_size+local_point_id-1)); local_y.insert(local_y.end(),y_target.begin()+local_point_id+keep_point+chang_lane_point,y_target.begin()+(local_path_size+local_point_id-1)); local_yaw.insert(local_yaw.end(),yaw_orignal.begin()+local_point_id+keep_point+chang_lane_point,yaw_orignal.begin()+(local_path_size+local_point_id-1)); } else { cout<<"keep_point + chang_lane_point 大于"<<local_path_size<<endl; }

时间: 2023-09-14 22:07:27 浏览: 53
这段代码是在给定一些条件的情况下,将一些值添加到 `local_x`、`local_y` 和 `local_yaw` 向量中的过程。首先,它检查 `local_point_id+keep_point+chang_lane_point` 是否小于 `x_orignal` 向量的大小。如果是,则将一些值从 `x_orignal`、`y_orignal` 和 `yaw_orignal` 向量中复制到 `local_x`、`local_y` 和 `local_yaw` 向量中。接下来,它使用一些循环和计算来计算一些局部路径点的坐标和角度,并将它们添加到 `local_x`、`local_y` 和 `local_yaw` 向量中。最后,如果满足条件 `keep_point+chang_lane_point<local_path_size`,则将一些额外的值从 `x_target`、`y_target` 和 `yaw_orignal` 向量中添加到 `local_x`、`local_y` 和 `local_yaw` 向量中。否则,输出一条错误消息。 需要注意的是,代码中的一些计算和索引操作可能需要进一步检查和验证,以确保其正确性和边界情况的处理。同时,代码中的输出语句 `cout<<"keep_point + chang_lane_point 大于"<<local_path_size<<endl;` 可能需要根据实际需求进行修改或处理。
相关问题

vector<double>&local_x,vector<double>&local_y,vector<double> &local_yaw,int local_point_id) { //double yaw_change=azimuthAngle(x_orignal[local_point_id+keep_point],y_orignal[local_point_id+keep_point], //x_target[local_point_id+keep_point+chang_lane_point],y_target[local_point_id+keep_point+chang_lane_point]); double dx=x_target[local_point_id+keep_point+chang_lane_point]-x_orignal[local_point_id+keep_point]; // keep_point--生成局部路径前的保持距离 double dy=y_target[local_point_id+keep_point+chang_lane_point]-y_orignal[local_point_id+keep_point]; Eigen::Matrix3d axis_rotation; axis_rotation = Eigen::AngleAxisd(yaw_orignal[local_point_id+keep_point], Eigen::Vector3d::UnitZ()) * Eigen::AngleAxisd(0, Eigen::Vector3d::UnitY()) * Eigen::AngleAxisd(0, Eigen::Vector3d::UnitX()); Eigen::Vector3d local_axis_loc(dx, dy, 0); auto local_axis_point=axis_rotation.inverse()*local_axis_loc; double local_angle=abs(atan((local_axis_point[0])/(local_axis_point[1]))); double xxx=local_axis_point[0]; double yyy=local_axis_point[1]; double x_average=local_axis_point[0]/(chang_lane_point+1); if (local_angle>M_PI_2) local_angle=M_PI-local_angle; else if (local_angle<-M_PI_2) local_angle=M_PI+local_angle; double change_rate_angle=(M_PI_2-local_angle)/(chang_lane_point+1)*2; if(x_target[local_point_id+keep_point+chang_lane_point]-x_orignal[local_point_id+keep_point]==0) { return false; }

这段代码是一个函数,接受一些参数并返回一个布尔值。函数的目的似乎是计算一些局部路径相关的值。在代码中,它首先计算了一些坐标和角度的差异,并使用旋转矩阵将坐标转换到局部坐标系中。然后,它计算了一些角度和变化率,并根据一些条件确定了最终的局部角度值。最后,它检查一些条件并返回一个布尔值。 需要注意的是,代码中的一行 `return false;` 是不符合函数的返回类型的,因为函数被声明为返回一个引用。这可能是一个错误或者需要对代码进行额外的修改。

请帮我优化一下这段代码def Perspective_transform(box,original_img): # # 获取画框宽高(x=orignal_W,y=orignal_H) # orignal_W = math.ceil(np.sqrt((box[3][1] - box[2][1])**2 + (box[3][0] - box[2][0])**2)) # orignal_H= math.ceil(np.sqrt((box[3][1] - box[0][1])**2 + (box[3][0] - box[0][0])**2)) # # # 原图中的四个顶点,与变换矩阵 # pts1 = np.float32([box[0], box[1], box[2], box[3]]) # pts2 = np.float32([[int(orignal_W+1),int(orignal_H+1)], [0, int(orignal_H+1)], [0, 0], [int(orignal_W+1), 0]]) # # # 生成透视变换矩阵;进行透视变换 # M = cv2.getPerspectiveTransform(pts1, pts2) # result_img = cv2.warpPerspective(original_img, M, (int(orignal_W+3),int(orignal_H+1))) # ROTATED_SIZE_W = 600 # 透视变换后的表盘图像大小 ROTATED_SIZE_H = 800 # 透视变换后的表盘图像大小 # 原图中书本的四个角点(左上、右上、右下、左下),与变换后矩阵位置 #pts1 = np.float32([[63, 72], [163, 32], [268, 144], [150, 215]]) pts1 = np.float32([box[0], box[1], box[2], box[3]]) # 变换后矩阵位置 pts2 = np.float32([[0, 0], [ROTATED_SIZE_W, 0], [ROTATED_SIZE_W, ROTATED_SIZE_H], [0, ROTATED_SIZE_H], ]) # 生成透视变换矩阵;进行透视变换 M = cv2.getPerspectiveTransform(pts1, pts2) result_img = cv2.warpPerspective(original_img, M, (ROTATED_SIZE_W, ROTATED_SIZE_H)) return result_img

这段代码主要是进行透视变换,将原图中四个顶点的位置映射到变换后矩阵位置上,生成透视变换矩阵并进行透视变换。其中可以考虑以下几点进行优化: 1. 变换后矩阵位置pts2可以预先计算出来,避免重复计算。 2. 变换后的表盘图像大小ROTATED_SIZE_W和ROTATED_SIZE_H可以作为函数参数传入,以增加代码的灵活性。 3. 可以添加注释来解释代码的作用和参数含义,提高代码的可读性。 优化后的代码如下: ``` def perspective_transform(box, original_img, rotated_size_w=600, rotated_size_h=800): """ 对原图进行透视变换,将四个顶点的位置映射到变换后矩阵位置上 Args: box: 四个顶点的坐标 original_img: 原始图像 rotated_size_w: 变换后的表盘图像宽度,默认为600 rotated_size_h: 变换后的表盘图像高度,默认为800 Returns: result_img: 透视变换后的图像 """ # 原图中四个顶点的坐标 pts1 = np.float32([box[0], box[1], box[2], box[3]]) # 变换后矩阵位置 pts2 = np.float32([[0, 0], [rotated_size_w, 0], [rotated_size_w, rotated_size_h], [0, rotated_size_h]]) # 生成透视变换矩阵;进行透视变换 M = cv2.getPerspectiveTransform(pts1, pts2) result_img = cv2.warpPerspective(original_img, M, (rotated_size_w, rotated_size_h)) return result_img ```

相关推荐

最新推荐

recommend-type

node-v18.18.2-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v7.7.3-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

使用C#,生成特定格式Word文档

Word文档的自动化生成,可以根据数据自动形成文档
recommend-type

JavaScript_简单的动画为您的顺风项目.zip

JavaScript
recommend-type

node-v10.10.0-headers.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。