Python爬取国家统计局
时间: 2023-12-25 19:30:15 浏览: 276
以下是使用Python爬取国家统计局数据的步骤:
1. 导入所需的库:
```python
import requests
from bs4 import BeautifulSoup
```
2. 发送HTTP请求获取网页内容:
```python
url = "http://data.stats.gov.cn/easyquery.htm?cn=A01"
response = requests.get(url)
```
3. 使用BeautifulSoup解析网页内容:
```python
soup = BeautifulSoup(response.text, 'html.parser')
```
4. 查找所需数据的位置并提取:
```python
data = soup.find('div', class_='center_list_contlist').text
```
5. 对数据进行处理和清洗:
```python
data = data.strip().replace('\n', '')
```
6. 打印提取到的数据:
```python
print(data)
```
相关问题
python爬取国家统计局
在Python中爬取国家统计局的数据通常涉及到网络爬虫技术,可以使用诸如`requests`库获取网页内容,然后利用如`BeautifulSoup`、`lxml`或`pandas`等工具解析HTML。以下是基本步骤:
1. 安装必要的库:
```bash
pip install requests beautifulsoup4 lxml pandas
```
2. 使用`requests.get()`获取网页内容:
```python
import requests
url = "http://www.stats.gov.cn/" # 国家统计局主页地址
response = requests.get(url)
```
3. 解析网页数据(假设用了BeautifulSoup):
```python
from bs4 import BeautifulSoup
soup = BeautifulSoup(response.text, 'lxml')
```
4. 找到包含所需信息的部分(可能需要分析页面结构):
```python
data_tags = soup.find_all('div', class_='data') # 这里假设数据在特定class下的元素
```
5. 提取和处理数据:
```python
data_list = []
for tag in data_tags:
# 根据需要提取文本、链接或其他属性
data_item = {
'title': tag.h3.text,
'value': tag.p.text,
}
data_list.append(data_item)
```
6. 将数据存储或进一步处理:
```python
df = pd.DataFrame(data_list) # 如果使用pandas存储数据
df.to_csv('stats_data.csv', index=False) # 写入CSV文件
```
请注意,实际操作时可能会遇到动态加载的内容、反爬机制(如验证码、IP限制)等问题。在爬取敏感数据或频繁访问网站时,请确保遵守相关法律法规,并尊重网站的robots.txt规则。
python爬取国家统计局棉花价格
### 使用Python实现网页爬虫抓取国家统计局发布的棉花价格数据
为了从国家统计局网站获取棉花价格数据,可以利用`requests`库来发送HTTP请求并接收响应,再通过`BeautifulSoup`解析HTML文档提取所需的数据。考虑到目标页面可能具有复杂的结构或动态加载的内容,有时还需要借助`selenium`这样的工具模拟浏览器行为。
#### 安装必要的库
首先安装所需的第三方库,可以通过pip命令完成:
```bash
pip install requests beautifulsoup4 selenium pandas
```
#### 编写爬虫脚本
下面是一个简单的例子展示如何构建一个基本的爬虫程序来收集特定的信息[^1]:
```python
import requests
from bs4 import BeautifulSoup
import pandas as pd
def fetch_cotton_prices(url):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)',
}
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, "html.parser")
# 假设表格位于<table>标签内,并且有唯一的class属性名为'cotton-prices'
table = soup.find('table', {'class': 'cotton-prices'})
rows = []
for row in table.findAll("tr")[1:]:
cols = row.findAll("td")
date = cols[0].text.strip()
price = float(cols[1].text.replace(',', '').strip())
rows.append([date, price])
df = pd.DataFrame(rows, columns=['Date', 'Price'])
return df
if __name__ == "__main__":
url = "http://example.com/cotton-price-statistics"
cotton_df = fetch_cotton_prices(url)
print(cotton_df.head())
# 将结果保存到CSV文件中以便后续分析
cotton_df.to_csv('./data/cotton_prices.csv', index=False)
```
请注意上述代码中的URL应替换为实际的目标网址;同时,定位表格的方式取决于具体的网页布局,这里假设了一个理想化的场景,即存在带有唯一类名`cotton-prices`的表格元素用于存储棉价信息。如果遇到JavaScript渲染后的页面,则需考虑使用像Selenium这样的自动化测试工具配合WebDriver操作真实的浏览器实例访问站点。
阅读全文
相关推荐














