crc-16/mcrf4xx

时间: 2023-07-18 11:02:12 浏览: 73
### 回答1: CRC-16/MCRF4XX是一种循环冗余校验(CRC)算法,它使用16位的校验码来检测和校验数据传输中的错误。MCRF4XX代表了适用于某些Mifare RFID卡的特定CRC变体。 CRC-16算法是基于多项式除法实现的。在计算CRC时,将数据和一个预定义的多项式进行除法运算,得到的余数即为CRC校验码。这种算法能够检测出常见的错误类型,如位翻转和传输干扰,但对于其他更复杂的错误类型可能无法检测。 CRC-16/MCRF4XX是专门设计用于Mifare RFID卡片的CRC变体。它的多项式是0x1021,这意味着在计算CRC时使用的除数是一个16位的二进制数1010000000000001。该CRC算法在Mifare卡片的通信中起到了一定的错误检测和校验作用,确保了数据的可靠性和完整性。 总结来说,CRC-16/MCRF4XX是一种对数据进行循环冗余校验的算法,在Mifare RFID卡片的通信中起到了一定的错误检测和校验作用,提高了数据传输的可靠性。 ### 回答2: CRC-16/MCRF4XX是一种CRC校验算法,常用于MIFARE Classic RFID卡片的通信协议中。 CRC(循环冗余校验)是一种根据数字数据位的移位、异或和追加等操作,生成一段校验位的方法。CRC-16/MCRF4XX算法采用多项式0x1021来计算校验位。 具体过程如下: 1. 初始化一个16位的寄存器,初始值为0xFFFF。 2. 将待校验的数据按照顺序逐个取出。 3. 将当前数据和寄存器的低8位进行异或运算。 4. 左移寄存器1位,最高位填充0。 5. 判断寄存器的最高位是否为1,若是则将寄存器与多项式0x1021进行异或运算。 6. 重复步骤2-5,直到所有数据都进行了异或运算。 7. 最后得到的寄存器值即为CRC校验位。 CRC-16/MCRF4XX校验算法具有较高的校验能力,能够检测出大部分错误。在MIFARE Classic RFID卡片通信中,使用CRC-16/MCRF4XX可以确保数据传输的准确性和完整性,防止数据在传输过程中被篡改。 总结一下,CRC-16/MCRF4XX是一种用于MIFARE Classic RFID卡片通信的CRC校验算法,通过对数据进行异或和移位操作,生成一段16位的校验位。它被广泛应用于数据通信中,以确保数据的准确性和完整性。 ### 回答3: CRC-16/MCRF4XX是一种循环冗余校验算法,它为RFID(Radio Frequency Identification)领域中的MIFARE卡片设计。 CRC-16/MCRF4XX是通过16位寄存器的移位操作来生成校验值的。它使用了一个预定义的多项式,通过对输入数据进行除法操作,通过不断地将余数追加到结果中,最终得到一个16位的校验码。 这种CRC算法具有高效、简洁的特点。它在一些RFID应用中被广泛使用,特别是在MIFARE卡片的通信协议中。通过使用CRC-16/MCRF4XX算法进行数据的校验,可以有效地提高数据的传输可靠性,减少因噪声和其他干扰引起的数据传输错误。 CRC-16/MCRF4XX算法的实现相对简单,它只需要一个16位的寄存器和一个除法器。在进行数据传输时,发送方会计算数据的校验码并将其附加在数据包的末尾。接收方在接收到数据时,也会使用相同的算法计算数据的校验码,并将其与接收到的校验码进行比较,从而确定数据的完整性和正确性。 CRC-16/MCRF4XX算法在RFID系统中起着重要的作用,它能够有效地检测和纠正数据传输中的错误。在应用中,我们可以根据具体需要选择合适的CRC算法以达到更好的性能和可靠性。

相关推荐

zip
基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。

最新推荐

recommend-type

CRC原理-我学习CRC32、CRC16、CRC 原理和算法的总结(与WINRAR 结果一致).pdf

我学习CRC32、CRC16、CRC 原理和算法的总结(与WINRAR 结果一致),里面详细描述了CRC原理,应用,及相应推导过程,是CRC讲得最全的,从入门到高阶及C语言写的例程都有!~~
recommend-type

scrapy练习 获取喜欢的书籍

主要是根据网上大神做的 项目一 https://zhuanlan.zhihu.com/p/687522335
recommend-type

基于PyTorch的Embedding和LSTM的自动写诗实验.zip

基于PyTorch的Embedding和LSTM的自动写诗实验LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
recommend-type

基于Java的云计算平台设计源码

云计算平台设计源码:该项目基于Java开发,包含126个文件,主要使用Java、JavaScript、HTML和CSS语言。该项目是一个云计算平台,旨在为用户提供一个高效、灵活的云计算服务,包括资源管理、虚拟化技术、分布式存储等功能,以满足不同用户的计算和存储需求。
recommend-type

grpcio-1.41.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。