char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\ "豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"] number = [str(i) for i in range(0, 10)] # 0 到 9 的数字 alphabet = [chr(i) for i in range(65, 91)] # A 到 Z 的字母 char_set = char_enum + number + alphabet char_set_len = len(char_set) label_name_len = len(all_label_names[0]) # 将字符串数字化 def text2vec(text): vector = np.zeros([label_name_len, char_set_len]) for i, c in enumerate(text): idx = char_set.index(c) vector[i][idx] = 1.0 return vector all_labels = [text2vec(i) for i in all_label_names]
时间: 2023-07-24 22:14:15 浏览: 142
SPI_enum.rar_enum s_spi
根据你提供的代码,你定义了一个字符集`char_set`,其中包含了车牌字符的枚举字符、数字和字母。`char_set_len`表示字符集的长度。
你还定义了一个`text2vec`函数,用于将车牌号转换为向量表示。这个函数将输入的车牌号文本转换为一个形状为(label_name_len, char_set_len)的向量,其中label_name_len表示标签名称的长度,char_set_len表示字符集的长度。
最后,你使用`text2vec`函数将所有的标签名称转换为向量表示,并存储在`all_labels`列表中。
这些代码片段可用于将车牌号转换为模型输入所需的向量表示形式。
如果你有其他问题,请随时提问。
阅读全文