强化学习选址的伪代码
时间: 2024-07-01 15:00:48 浏览: 140
GA.rar_物流配送 matlab_选址 matlab代码_选址 遗传_选址遗传_遗传算法选址
5星 · 资源好评率100%
强化学习(Reinforcement Learning, RL)中的选址策略通常用于确定智能体在给定状态下应该采取的动作。这里有一个简单的强化学习选址策略的伪代码示例,使用Q-learning算法作为基础:
```python
// 假设我们有一个环境类Environment和智能体类Agent
class Environment:
def __init__(self):
# 环境初始化
def step(self, action):
# 根据动作执行一步并返回新的状态和奖励
class Agent:
def __init__(self, actions, learning_rate, discount_factor):
self.q_table = {state: {action: 0 for action in actions} for state in states}
self.learning_rate = learning_rate
self.discount_factor = discount_factor
def select_action(self, state):
if random.random() < epsilon: # 选择随机动作
return random.choice(actions)
else: # 选择具有最大Q值的动作
return max(self.q_table[state], key=self.q_table[state].get)
def update_q_value(self, state, action, reward, next_state):
max_future_q = max(self.q_table[next_state].values()) if next_state is not None else 0
current_q = self.q_table[state][action]
new_q = (1 - self.learning_rate) * current_q + self.learning_rate * (reward + self.discount_factor * max_future_q)
self.q_table[state][action] = new_q
# 使用
agent = Agent(environment.actions, learning_rate=0.1, discount_factor=0.9)
for episode in range(num_episodes):
state = environment.reset()
while True:
action = agent.select_action(state)
next_state, reward, done = environment.step(action)
agent.update_q_value(state, action, reward, next_state)
if done:
break
state = next_state
```
阅读全文