属性错误:“numpy.float64”对象没有属性“拆分”怎么解决

时间: 2023-11-04 14:04:29 浏览: 46
要解决这个问题,你可以尝试以下步骤: 1. 确保你导入了正确的库。检查你是否正确导入了NumPy库。 ```python import numpy as np ``` 2. 检查你的代码中是否有对`split`方法的错误使用。`numpy.float64`对象并没有`split`方法,所以可能是你在使用时出现了错误。 3. 如果你想要对一个NumPy数组执行拆分操作,你可以使用`numpy.split()`方法。 ```python import numpy as np # 创建一个NumPy数组 arr = np.array([1, 2, 3, 4, 5, 6]) # 使用numpy.split()方法对数组进行拆分 splitted_arr = np.split(arr, 3) print(splitted_arr) ``` 这段代码将会把数组 `arr` 分成3个部分,并打印结果。 如果以上方法仍然无法解决问题,请提供更多的代码和错误信息,以便我能够更好地帮助你解决问题。
相关问题

AttributeError: 'numpy.float64' object has no attribute 'split'

您遇到的错误是"AttributeError: 'numpy.float64' object has no attribute 'split'"。这个错误说明在一个名为'numpy.float64'的对象上调用了'split'方法,但是'numpy.float64'类型并没有定义'split'方法。这个错误通常发生在您试图将一个浮点数对象拆分为多个部分时。 要解决这个问题,您可以检查代码中涉及到对该对象进行'split'操作的地方。确保您正在操作的是一个字符串对象而不是一个浮点数对象。您可以使用type()函数来检查变量的类型,例如,使用type(name)来检查变量name的类型是否为字符串。 另外,根据引用中提供的代码段,您可能还需要确保在查询SourceMod13Data的name时,name的类型是字符串。您可以使用str()函数将name转换为字符串,如str(name),以确保它被正确处理。 最后,引用提供了一种避免此类错误的方法,即在需要使用字典时将其转换为字符串输出或返回,并在使用时再将其转换回字典。您可以使用json库中的dumps()函数将字典转换为字符串,loads()函数将字符串转换回字典。这样可以确保数据的一致性和正确性。 综上所述,为了解决"AttributeError: 'numpy.float64' object has no attribute 'split'"的错误,请检查您的代码中涉及到该错误的地方,并确保操作的对象是字符串类型。如果需要,可以使用str()函数将变量转换为字符串。另外,您还可以考虑使用json库将字典转换为字符串进行处理,以避免数据类型的错误。

numpy.core._exceptions.MemoryError: Unable to allocate 1.87 GiB for an array with shape (1000000, 251) and data type float64

这个错误是内存不足导致的,意味着你的计算机没有足够的内存来创建这个大小的数组。你可以尝试使用减少数组的大小,或者使用更高级别的计算机来处理这个问题。另外,你也可以考虑使用分布式计算框架,如Apache Spark或Dask,来处理大型数据集。这些框架可以将大型数据集拆分成小块并分发到多个计算机上进行处理。

相关推荐

from data_process import get_data import torch from sklearn.model_selection import train_test_split from LeNet5 import LeNet5 X, y = get_data() # 获取数据【0.025,0.035】100*0.2 = 20 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y) # 数据拆分 print(X_train.shape) #(1075, 227, 227, 1) 0 1 2 3 --- (1075, 1, 227, 227) 0 3 1 2 X_train_tensor = torch.tensor(X_train, dtype=torch.float32).permute(0, 3, 1, 2) # 将数据转成模型要求的形式 print(X_train_tensor.shape) X_test_tensor = torch.tensor(X_test, dtype=torch.float32).permute(0, 3, 1, 2) y_train_tensor = torch.tensor(y_train, dtype=torch.int64) train_ds = torch.utils.data.TensorDataset(X_train_tensor, y_train_tensor) # 将数据转为tensordata类型 train_dl = torch.utils.data.DataLoader(train_ds, batch_size=128, shuffle=True) # 对数据进行分批及打乱操作 network = LeNet5() # 实例化得到一个leNet-5网络模型 loss_fn = torch.nn.CrossEntropyLoss() # 损失函数(交差熵) optimizer = torch.optim.SGD(network.parameters(), lr=0.01) # 优化器 # 模型训练 for epoch in range(1): for image, label in train_dl: y_pre = network(image) # 模型计算(前向传播) loss = loss_fn(y_pre, label) # 计算损失值 network.zero_grad() # 将网络中的所有梯度清零 loss.backward() # 计算梯度项(反向求导) optimizer.step() # 参数优化(模型训练) print('第{}轮训练,当前批次的训练损失值为:{}'.format(epoch, loss.item())) predicted = network(X_test_tensor) # 模型预测 result = predicted.data.numpy().argmax(axis=1) # 预测标签 acc_test = (result == y_test).mean() # 模型测试精度 print(acc_test) torch.save(network.state_dict(), 'leNet5-1.pt') # 保存模型参数

plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False radar_labels = np.array(['用户A', '用户B', '用户C', '用户D']) nAttr = 4 # 图的边数 #建议优化这个功能 #从文件读取数据并绘图,问题点:1.文件的数据需要严格控制为4行,如果同一用户测了两次会报错 # 2.不能精确定位某一用户的数据,如果用户D先测,在图里会显示为用户A的数据 #建议:根据用户数量动态调整图的数据(有点难) or 让新的数据覆盖原有数据,如用户B测了多次,取最近一次的数据覆盖第二行(比前一个简单点) fo = open("record_num.txt", "r") data = [] for line in fo.readlines(): s = line.split() s = np.array([s[0], s[1], s[2]]) s = s.astype(np.float) data.append(s) fo.close() data_labels = ('状态', '答题速度', '答题准确率') # 属性标签 angles = np.linspace(0, 2 * np.pi, nAttr, endpoint=False) data = np.concatenate((data, [data[0]])) # 数据 angles = np.concatenate((angles, [angles[0]])) fig = plt.figure(facecolor="white") plt.subplot(111, polar=True) plt.plot(angles, data, 'bo-', color='gray', linewidth=1, alpha=0.2) plt.plot(angles, data, 'o-', linewidth=1.5, alpha=0.2) plt.fill(angles, data, alpha=0.25) plt.thetagrids((angles * 180 / np.pi)[:-1], radar_labels) plt.figtext(0.52, 0.95, '单词测试分析图', ha='center', size=20) # 标题 legend = plt.legend(data_labels, loc=(0.94, 0.80), labelspacing=0.1) plt.setp(legend.get_texts(), fontsize='small') plt.grid(True) plt.savefig('holland_radar.jpg') plt.show() elif option == 0:

f = open('G:\jiont\比赛数据2022\charging_data79.csv', encoding='utf-8') data = pd.DataFrame(pd.read_csv(f, encoding='utf-8-sig', low_memory=False)) soc = np.array(data['standard_soc']) # 放电深度DoD current = np.array(data['total_current']) current = [ float(x)/10 for x in current ] all_vol = np.array(data['cell_volt_list']) mileage = np.array(data['mileage']) mileage = [ float(x)/10 for x in mileage ] all_sig_data = cycle_sig(all_vol) all_sig_data = clean_data(all_sig_data) def split_chargedata(chargr_data): a_data = [] all_data = [] for index, m in enumerate(mileage): if index + 1 < len(mileage): if m == mileage[index + 1]: a_data.append(chargr_data[index]) else: a_data.append(chargr_data[index]) all_data.append(a_data) a_data = [] else: all_data.append(a_data) return all_data all_charge_data = split_chargedata(all_sig_data) all_charge_current = split_chargedata(current) all_charge_soc = split_chargedata(soc) dod1 = [] for t in all_charge_soc: dod1.append(t[-1]-t[0]) ind = [] for ind1, t in enumerate(dod1): if t<10: ind.append(ind1) all_charge_data = np.delete(all_charge_data, ind, axis=0) all_charge_current = np.delete(all_charge_current, ind, axis=0) all_charge_soc = np.delete(all_charge_soc, ind, axis=0) ind9 = [5, 13, 25, 35, 47, 55, 81, 84, 86, 88, 89, 92, 94, 101, 111, 115, 116, 126, 157, 162, 167, 174, 180, 198, 200, 216, 237, 245, 261] all_charge_data = np.delete(all_charge_data, ind9, axis=0) all_charge_current = np.delete(all_charge_current, ind9, axis=0) all_charge_soc = np.delete(all_charge_soc, ind9, axis=0)

import tkinter as tk from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import numpy as np import pandas as pd global button1 seeds=pd.read_csv("seed2.csv",sep='\t',header=None) X = seeds.iloc[:,:7].copy() y=seeds.iloc[:,-1].copy() X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=test,random_state=random) def knn_score(k,X,y):# 构造算法对象 knn = KNeighborsClassifier(n_neighbors = k) scores = [] train_scores = [] random=NIrandom_state.get() global test_size for i in range(100): # 拆分 if random_state!="": X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=test,random_state=random) else: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=test) # 训练 knn.fit(X_train,y_train) # 评价模型 scores.append(knn.score(X_test,y_test)) # 经验评分 train_scores.append(knn.score(X_train,y_train)) return np.array(scores).mean(),np.array(train_scores).mean() def root4(): root4=tk.Toplevel()#建立顶层控件wind root4.geometry("800x600")#设置窗口大小 root4.title("测试集与训练集划分")#设置窗口标题 label1 = tk.Label(root4, text="测试集与训练集划分", font=("Arial", 16)) label1.pack() global NIrandom_state,NItest_size NIrandom_state= tk.IntVar() tk.Label(root4, text="random_state:").place(x=50, y=50) tk.Entry(root4, textvariable=NIrandom_state).place(x=190,y=50) NItest_size= tk.IntVar() tk.Label(root4, text="用于测试的数据集比例:").place(x=50,y=110) tk.Entry(root4, textvariable=NItest_size).place(x=190,y=110) # 添加按钮 global button1 button1 = tk.Button(root4, text="运算", font=("Arial", 12),command=button_click) button1.place(x=50,y=150) global button2 button2=tk.Button(root4,text="图表展示",font=("Arial", 12),command=chart) button2.place(x=100,y=150) # 添加文本框 global text1 text1 = tk.Text(root4, width=50, height=10) text1.place(x=50,y=200) # 绑定按钮def button_click(): global test,random random=int(NIrandom_state.get()) test=float(NItest_size.get()) global button1 result_dict = {} k_list = [1,3,5,7,9,11] for k in k_list: score,train_score = knn_score(k,X,y) result_dict[k] = [score,train_score] result = pd.DataFrame(result_dict).T.copy() result.columns = ['Test','Train'] text=tk.Text(root4) text.place(x=100, y=220) text.insert("end",X_train) text.insert("end",X_text) text.insert("end",y_train) text.insert("end",y_text) text1.delete(1.0, tk.END) text1.insert(tk.END, result) import tkinter as tk from matplotlib.figure import Figure from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backend_bases import key_press_handler import matplotlib.pyplot as plt %matplotlib inline def chart(): root5= tk.Toplevel() root5.title("结果图形") fig = plt.figure() k_list = [1,3,5,7,9,11] result_dict = {} canvas = FigureCanvasTkAgg(fig, master=root5) canvas.get_tk_widget().pack() canvas.draw() global result result = pd.DataFrame(result_dict).T.copy() plt.xticks(k_list) plt.show() root4.mainloop()其中有什么问题

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。