为了模拟云环境,我们使用Cloudsim构建了一个包含10个主机和30个虚拟机的云环境。其中,每个主机包含4个CPU、8GB内存和100GB存储空间;每个虚拟机包含1个CPU、2GB内存和20GB存储空间。 2.运行实验 在不同负载情况下,我们分别测试了基于多维QoS的虚拟机调度算法和传统的虚拟机调度算法,并记录了以下指标: VM启动时间 VM迁移时间 网络带宽 资源利用率 响应时间 具体而言,我们分别模拟了以下负载情况: 低负载:每个主机上运行3个虚拟机。 中等负载:每个主机上运行6个虚拟机。 高负载:每个主机上运行9个虚拟机。 请书写以上四个代码,并且每个代码用回车隔开。
时间: 2024-04-17 16:24:51 浏览: 123
首先,我们需要定义主机和虚拟机的参数,后创建主机和虚拟机对象。以下是创建主机和虚拟机的代码:
```java
int numHosts = 10;
int numVMs = 30;
List<Host> hostList = new ArrayList<Host>();
List<Vm> vmList = new ArrayList<Vm>();
for (int i = 0; i < numHosts; i++) {
List<Pe> peList = new ArrayList<Pe>();
for (int j = 0; j < 4; j++) {
peList.add(new Pe(j, new PeProvisionerSimple(1000))); // 4个CPU,每个CPU 1000 MIPS
}
int ram = 8192; // 8GB内存
long storage = 100000; // 100GB存储空间
int bw = 10000; // 带宽
hostList.add(new Host(i, new RamProvisionerSimple(ram), new BwProvisionerSimple(bw), storage, peList, new VmSchedulerSpaceShared(peList)));
}
for (int i = 0; i < numVMs; i++) {
int mips = 1000; // 1个CPU,每个CPU 1000 MIPS
int ram = 2048; // 2GB内存
long storage = 20000; // 20GB存储空间
int bw = 1000; // 带宽
Vm vm = new Vm(i, brokerId, mips, 1, ram, bw, storage, "Xen", new CloudletSchedulerTimeShared());
vmList.add(vm);
}
```
接下来,我们可以根据不同的负载情况进行实验,并记录指标。以下是低、中等和高负载情况下的代码示例:
1. 低负载:
```java
// 设置每个主机上运行的虚拟机数量
int vmCountLow = 3;
for (int i = 0; i < numHosts; i++) {
for (int j = 0; j < vmCountLow; j++) {
broker.bindVmToHost(vmList.get(j), hostList.get(i));
// 设置虚拟机的任务,执行一段时间
cloudletList.get(j).setVmId(vmList.get(j).getId());
broker.submitCloudletList(cloudletList.subList(j, j+1));
}
}
CloudSim.startSimulation();
// 等待仿真结束
// 记录指标
double vmStartupTimeLow = calculateVmStartupTime(vmList.subList(0, vmCountLow));
double vmMigrationTimeLow = calculateVmMigrationTime(vmList.subList(0, vmCountLow));
double networkBandwidthLow = calculateNetworkBandwidth(vmList.subList(0, vmCountLow));
double resourceUtilizationLow = calculateResourceUtilization(hostList);
double responseTimeLow = calculateResponseTime(cloudletList.subList(0, vmCountLow));
// 打印指标
System.out.println("低负载情况下的指标:");
System.out.println("VM启动时间:" + vmStartupTimeLow);
System.out.println("VM迁移时间:" + vmMigrationTimeLow);
System.out.println("网络带宽:" + networkBandwidthLow);
System.out.println("资源利用率:" + resourceUtilizationLow);
System.out.println("响应时间:" + responseTimeLow);
```
2. 中等负载:
```java
// 设置每个主机上运行的虚拟机数量
int vmCountMedium = 6;
for (int i = 0; i < numHosts; i++) {
for (int j = 0; j < vmCountMedium; j++) {
broker.bindVmToHost(vmList.get(j), hostList.get(i));
// 设置虚拟机的任务,执行一段时间
cloudletList.get(j).setVmId(vmList.get(j).getId());
broker.submitCloudletList(cloudletList.subList(j, j+1));
}
}
CloudSim.startSimulation();
// 等待仿真结束
// 记录指标
double vmStartupTimeMedium = calculateVmStartupTime(vmList.subList(0, vmCountMedium));
double vmMigrationTimeMedium = calculateVmMigrationTime(vmList.subList(0, vmCountMedium));
double networkBandwidthMedium = calculateNetworkBandwidth(vmList.subList(0, vmCountMedium));
double resourceUtilizationMedium = calculateResourceUtilization(hostList);
double responseTimeMedium = calculateResponseTime(cloudletList.subList(0, vmCountMedium));
// 打印指标
System.out.println("中等负载情况下的指标:");
System.out.println("VM启动时间:" + vmStartupTimeMedium);
System.out.println("VM迁移时间:" + vmMigrationTimeMedium);
System.out.println("网络带宽:" + networkBandwidthMedium);
System.out.println("资源利用率:" + resourceUtilizationMedium);
System.out.println("响应时间:" + responseTimeMedium);
```
3. 高负载:
```java
// 设置每个主机上运行的虚拟机数量
int vmCountHigh = 9;
for (int i = 0; i < numHosts; i++) {
for (int j = 0; j < vmCountHigh; j++) {
broker.bindVmToHost(vmList.get(j), hostList.get(i));
// 设置虚拟机的任务,执行一段时间
cloudletList.get(j).setVmId(vmList.get(j).getId());
broker.submitCloudletList(cloudletList.subList(j, j+1));
}
}
CloudSim.startSimulation();
// 等待仿真结束
// 记录指标
double vmStartupTimeHigh = calculateVmStartupTime(vmList.subList(0, vmCountHigh));
double vmMigrationTimeHigh = calculateVmMigrationTime(vmList.subList(0, vmCountHigh));
double networkBandwidthHigh = calculateNetworkBandwidth(vmList.subList(0, vmCountHigh));
double resourceUtilizationHigh = calculateResourceUtilization(hostList);
double responseTimeHigh = calculateResponseTime(cloudletList.subList(0, vmCountHigh));
// 打印指标
System.out.println("高负载情况下的指标:");
System.out.println("VM启动时间:" + vmStartupTimeHigh);
System.out.println("VM迁移时间:" + vmMigrationTimeHigh);
System.out.println("网络带宽:" + networkBandwidthHigh);
System.out.println("资源利用率:" + resourceUtilizationHigh);
System.out.println("响应时间:" + responseTimeHigh);
```
以上是基于多维QoS的虚拟机调度算法和传统的虚拟机调度算法的实验代码示例。你可以根据自己的需求进行修改和扩展。注意,在运行实验之前,你还需要定义和初始化CloudSim的一些参数,如初始化CloudSim和创建Datacenter、DatacenterBroker等。希望对你有所帮助!
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![-](https://img-home.csdnimg.cn/images/20241231044833.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![gz](https://img-home.csdnimg.cn/images/20210720083447.png)
![application/msword](https://img-home.csdnimg.cn/images/20210720083327.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![ppt](https://img-home.csdnimg.cn/images/20241231044937.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)