基于python人脸识别
时间: 2023-12-15 20:32:20 浏览: 120
基于Python的人脸识别技术主要包括三个部分:人脸检测、人脸特征提取和人脸识别。常用的库包括OpenCV和Dlib等。
以下是一个基于Python的人脸识别的示例代码:
```python
import cv2
import dlib
# 加载正脸检测器
detector = dlib.get_frontal_face_detector()
# 加载人脸关键点检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# 加载人脸识别模型
facerec = dlib.face_recognition_model_v1("dlib_face_recognition_resnet_model_v1.dat")
# 加载图片
img = cv2.imread("test.jpg")
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 检测人脸
faces = detector(gray, 1)
# 遍历每个人脸
for face in faces:
# 获取人脸关键点
landmarks = predictor(gray, face)
# 获取人脸特征
face_descriptor = facerec.compute_face_descriptor(img, landmarks)
# 在图像中绘制人脸框和关键点
cv2.rectangle(img, (face.left(), face.top()), (face.right(), face.bottom()), (0, 255, 0), 2)
for i in range(68):
x = landmarks.part(i).x
y = landmarks.part(i).y
cv2.circle(img, (x, y), 2, (0, 0, 255), -1)
# 显示图像
cv2.imshow("image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
该代码使用了Dlib库进行人脸检测、关键点检测和人脸识别,并使用OpenCV库进行图像处理和显示。具体步骤包括:
1. 加载正脸检测器、人脸关键点检测器和人脸识别模型。
2. 加载图片并转换为灰度图像。
3. 使用正脸检测器检测人脸。
4. 遍历每个人脸,获取人脸关键点和人脸特征,并在图像中绘制人脸框和关键点。
5. 显示图像。
阅读全文