class CellTrack_GNN(EedgePath_MPNN): def __init__(self, in_channels: int, hidden_channels: int, in_edge_channels: int, hidden_edge_channels_linear: int, hidden_edge_channels_conv: int, num_layers: int, num_nodes_features: int, dropout: float = 0.0, act: Optional[Callable] = ReLU(inplace=True), norm: Optional[torch.nn.Module] = None, jk: str = 'last', **kwargs): super().__init__(in_channels, hidden_channels, in_edge_channels, hidden_edge_channels_linear, num_layers, dropout, act, norm, jk) assert in_edge_channels == hidden_edge_channels_linear[-1] in_edge_dims = in_edge_channels + num_nodes_features * in_channels + 1 self.convs.append(PDNConv(in_channels, hidden_channels, in_edge_channels, hidden_edge_channels_conv, **kwargs)) self.fcs.append(MLP(in_edge_dims, hidden_edge_channels_linear, dropout_p=dropout)) for _ in range(1, num_layers): self.convs.append( PDNConv(hidden_channels, hidden_channels, in_edge_channels, hidden_edge_channels_conv, **kwargs)) self.fcs.append(MLP(in_edge_dims, hidden_edge_channels_linear, dropout_p=dropout))

时间: 2024-02-14 12:29:33 浏览: 60
这是一个名为`CellTrack_GNN`的类的定义,它继承自`EedgePath_MPNN`类。`CellTrack_GNN`是一个图神经网络(GNN)模型,用于细胞追踪任务。 在构造函数`__init__`中,我们接受了一系列参数,包括输入通道数`in_channels`、隐藏通道数`hidden_channels`、边输入通道数`in_edge_channels`、线性隐藏边通道数`hidden_edge_channels_linear`、卷积隐藏边通道数`hidden_edge_channels_conv`、层数`num_layers`、节点特征数`num_nodes_features`、dropout概率`dropout`、激活函数`act`、归一化层`norm`和jk汇聚方式`jk`。 我们首先调用父类的构造函数来初始化一些共享的属性。然后,我们根据输入通道数、隐藏通道数、边输入通道数和线性隐藏边通道数创建一个图卷积层`PDNConv`,并将其添加到卷积层列表`self.convs`中。 接下来,我们根据边输入通道数、节点特征数和输入通道数创建一个多层感知机(MLP)模型,将其添加到MLP列表`self.fcs`中。然后,我们使用循环来创建更多的图卷积层和MLP模型,并将它们添加到对应的列表中。 最后,我们可以使用`CellTrack_GNN`类的对象来进行细胞追踪任务的图神经网络计算。
相关问题

def __init__(self, hand_NodeEncoder_dic={}, learned_NodeEncoder_dic={}, intialize_EdgeEncoder_dic={}, message_passing={}, edge_classifier_dic={} ): super(CellTrack_Model, self).__init__() self.distance = CosineSimilarity() self.handcrafted_node_embedding = MLP(**hand_NodeEncoder_dic) self.learned_node_embedding = MLP(**learned_NodeEncoder_dic) self.learned_edge_embedding = MLP(**intialize_EdgeEncoder_dic) edge_mpnn_class = getattr(edge_mpnn, message_passing.target) self.message_passing = edge_mpnn_class(**message_passing.kwargs) self.edge_classifier = MLP(**edge_classifier_dic)

这段代码是定义了一个名为CellTrack_Model的类,该类继承自PyTorch中的nn.Module类。在类的构造函数`__init__`中,有一系列参数用于初始化模型的各个组件。 - `hand_NodeEncoder_dic`、`learned_NodeEncoder_dic`、`intialize_EdgeEncoder_dic`、`message_passing`和`edge_classifier_dic`是字典类型的参数,用于配置MLP(多层感知机)的各个参数。 - `self.distance`是一个CosineSimilarity类的对象,用于计算余弦相似度。 - `self.handcrafted_node_embedding`、`self.learned_node_embedding`和`self.learned_edge_embedding`是MLP类的对象,用于节点特征嵌入。 - `self.message_passing`是根据`message_passing.target`参数选择相应的类,并使用`message_passing.kwargs`参数进行初始化,用于消息传递。 - `self.edge_classifier`也是一个MLP类的对象,用于边分类。 通过这些组件的初始化,CellTrack_Model类可以进行节点特征嵌入、消息传递和边分类等操作。

class CellTrack_Model(nn.Module): def __init__(self, hand_NodeEncoder_dic={}, learned_NodeEncoder_dic={}, intialize_EdgeEncoder_dic={}, message_passing={}, edge_classifier_dic={} ): super(CellTrack_Model, self).__init__() self.distance = CosineSimilarity() self.handcrafted_node_embedding = MLP(**hand_NodeEncoder_dic) self.learned_node_embedding = MLP(**learned_NodeEncoder_dic) self.learned_edge_embedding = MLP(**intialize_EdgeEncoder_dic) edge_mpnn_class = getattr(edge_mpnn, message_passing.target) self.message_passing = edge_mpnn_class(**message_passing.kwargs) self.edge_classifier = MLP(**edge_classifier_dic) def forward(self, x, edge_index, edge_feat): x1, x2 = x x_init = torch.cat((x1, x2), dim=-1) src, trg = edge_index similarity1 = self.distance(x_init[src], x_init[trg]) abs_init = torch.abs(x_init[src] - x_init[trg]) x1 = self.handcrafted_node_embedding(x1) x2 = self.learned_node_embedding(x2) x = torch.cat((x1, x2), dim=-1) src, trg = edge_index similarity2 = self.distance(x[src], x[trg]) edge_feat_in = torch.cat((abs_init, similarity1[:, None], x[src], x[trg], torch.abs(x[src] - x[trg]), similarity2[:, None]), dim=-1) edge_init_features = self.learned_edge_embedding(edge_feat_in) edge_feat_mp = self.message_passing(x, edge_index, edge_init_features) pred = self.edge_classifier(edge_feat_mp).squeeze() return pred

这段代码定义了一个名为 `CellTrack_Model` 的神经网络模型,该模型用于细胞轨迹跟踪任务。 在 `__init__` 方法中,模型的各个组件和参数被定义: - `hand_NodeEncoder_dic`、`learned_NodeEncoder_dic`、`intialize_EdgeEncoder_dic`、`message_passing` 和 `edge_classifier_dic` 分别表示手工设计的节点编码器、学习得到的节点编码器、初始化的边编码器、消息传递参数和边分类器的参数字典。 在 `forward` 方法中,定义了模型的前向传播过程: 1. 首先对输入的节点特征 x 进行拆分,得到 x1 和 x2。然后将它们拼接成一个新的输入 x_init。 2. 计算 x_init 中源节点和目标节点之间的相似度 similarity1,以及它们的绝对差值 abs_init。 3. 分别通过手工设计的节点编码器和学习得到的节点编码器对 x1 和 x2 进行编码。 4. 将编码后的节点特征拼接成新的节点特征 x,并计算 x 中源节点和目标节点之间的相似度 similarity2。 5. 根据源节点和目标节点的特征,以及相似度和差值等特征,拼接成输入边特征 edge_feat_in。 6. 使用初始化的边编码器对输入边特征进行编码得到 edge_init_features。 7. 使用消息传递过程(message_passing)对节点特征和边特征进行传递和更新。 8. 将更新后的边特征通过边分类器进行预测,得到预测结果 pred。 9. 返回预测结果 pred。 这段代码实现了一个用于细胞轨迹跟踪的神经网络模型。通过对输入的节点特征进行编码和传递,最终预测边的标签。
阅读全文

相关推荐

最新推荐

recommend-type

为Matlab 用户提供丰富功能的工具集

Matlab 用户提供丰富功能的工具集。 从优点来看,其涵盖了诸多实用的功能模块。例如在计算机视觉和图像处理领域,可能包含了图像特征提取、目标检测、图像分割等常用算法的实现,这为相关领域的研究人员和开发者节省了大量的时间和精力,无需从头编写复杂的算法代码,提高了开发效率。工具包的文档相对较为详细,能够帮助用户快速上手并理解各个函数和工具的使用方法,降低了使用门槛。同时,它可能具有较好的兼容性,能够与 Matlab 的原生功能和其他常用工具箱协同工作,方便用户整合到自己的项目中。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

技术资料分享KXTE9-2050 Specifications Rev 3非常好的技术资料.zip

技术资料分享KXTE9-2050 Specifications Rev 3非常好的技术资料.zip
recommend-type

yolo算法-废物数据集-1000张图像带标签-金属废料-杯子-垃圾桶-废物-纸张-塑料-瓶-有机废物.zip

yolo系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值
recommend-type

VB程序实例-使用Stream读写存储的图像.zip

VB程序实例-使用Stream读写存储的图像.zip
recommend-type

VB程序实例78_系统操作_锁定计算机.zip

VB程序实例,可供参考学习使用,希望对你有所帮助
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。