人工智能手写数字识别写一个图像预处理代码
时间: 2024-11-25 07:33:34 浏览: 16
人工智能手写数字识别的图像预处理通常涉及以下几个步骤,这里以Python的`OpenCV`库为例:
```python
import cv2
import numpy as np
# 读取图片
img = cv2.imread('handwritten_digit.jpg', cv2.IMREAD_GRAYSCALE)
# 1. 图像缩放 (如果需要调整大小)
resized_img = cv2.resize(img, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR)
# 2. 去噪处理 (例如高斯滤波)
blurred_img = cv2.GaussianBlur(resized_img, (5, 5), 0)
# 3. 转二值化 (阈值处理)
_, thresholded_img = cv2.threshold(blurred_img, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# 4. 边缘检测 (增强轮廓)
edges = cv2.Canny(thresholded_img, 30, 70)
# 5. 形态学操作 (如膨胀、腐蚀等) 可能会用于去除孤立点或细化边界
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
closed_img = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
# 6. 裁剪到感兴趣的区域 (有时可能需要根据边缘确定)
contours, _ = cv2.findContours(closed_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(contour)
cropped_img = img[y:y+h, x:x+w]
# 返回预处理后的图像
preprocessed_img = cropped_img
```
阅读全文