@Value("#{${facebook.brief.app.audience:}}") private Map<String, Set<String> 这种类型在apollo里怎么设置

时间: 2024-09-06 18:06:49 浏览: 41
7Z

fatal error: boostdesc_bgm.i: No such file or directory补充文件

在Apollo配置中心中设置`@Value("#{${facebook.brief.app.audience:}}") private Map<String, Set<String>>`这种类型的配置,需要按照以下步骤操作: 1. 在Apollo配置中心的对应应用的配置文件中添加配置项。例如,如果你想通过Apollo配置中心来动态地设置`facebook.brief.app.audience`这个属性,你需要在配置文件中添加一个以`facebook.brief.app.audience`为key的配置项,并且其值应该是一个有效的JSON格式字符串,用来表示一个Map结构,比如: ```properties facebook.brief.app.audience={"key1":["value1","value2"],"key2":["value3","value4"]} ``` 2. 确保你的应用已经正确集成了Apollo,并且能够在运行时从Apollo配置中心获取配置。 3. 在Spring Boot应用中使用`@Value`注解,你需要在启动类上加上`@EnableApolloConfig`注解来启用Apollo配置的自动加载。然后,就可以在需要的地方使用`@Value`注解来注入配置项。但是,由于`@Value`注解不支持直接解析复杂的JSON格式,因此你可能需要使用`@ConfigurationProperties`注解来替代`@Value`,或者通过编写一个配置处理器来解析这个JSON字符串到具体的Map对象。例如: ```java @Configuration @EnableApolloConfig public class ApolloConfig { @Bean public Map<String, Set<String>> facebookBriefAppAudience() { // 在这里编写解析JSON字符串到Map的代码 // ... return yourMap; } } ``` 4. 确保你的Bean配置正确,并且在应用启动时能够加载到对应的配置项。 需要注意的是,Apollo本身是一个分布式配置中心,并不直接支持JSON配置的自动解析,所以你需要在应用中实现相应的解析逻辑。
阅读全文

相关推荐

给下列程序添加英文注释:namespace nav_core { /** * @class BaseGlobalPlanner * @brief Provides an interface for global planners used in navigation. All global planners written as plugins for the navigation stack must adhere to this interface. / class BaseGlobalPlanner{ public: /* * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @return True if a valid plan was found, false otherwise / virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan) = 0; /* * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @param cost The plans calculated cost * @return True if a valid plan was found, false otherwise / virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan, double& cost) { cost = 0; return makePlan(start, goal, plan); } /* * @brief Initialization function for the BaseGlobalPlanner * @param name The name of this planner * @param costmap_ros A pointer to the ROS wrapper of the costmap to use for planning / virtual void initialize(std::string name, costmap_2d::Costmap2DROS costmap_ros) = 0; /** * @brief Virtual destructor for the interface */ virtual ~BaseGlobalPlanner(){} protected: BaseGlobalPlanner(){} }; }; // namespace nav_core #endif // NAV_CORE_BASE_GLOBAL_PLANNER_H

给下列程序添加注释namespace nav_core { /** * @class BaseGlobalPlanner * @brief Provides an interface for global planners used in navigation. All global planners written as plugins for the navigation stack must adhere to this interface. */ class BaseGlobalPlanner{ public: /** * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @return True if a valid plan was found, false otherwise */ virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan) = 0; /** * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @param cost The plans calculated cost * @return True if a valid plan was found, false otherwise */ virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan, double& cost) { cost = 0; return makePlan(start, goal, plan); } /** * @brief Initialization function for the BaseGlobalPlanner * @param name The name of this planner * @param costmap_ros A pointer to the ROS wrapper of the costmap to use for planning */ virtual void initialize(std::string name, costmap_2d::Costmap2DROS* costmap_ros) = 0; /** * @brief Virtual destructor for the interface */ virtual ~BaseGlobalPlanner(){} protected: BaseGlobalPlanner(){} }; }; // namespace nav_core #endif // NAV_CORE_BASE_GLOBAL_PLANNER_H

分析以下程序:namespace nav_core { /** * @class BaseGlobalPlanner * @brief Provides an interface for global planners used in navigation. All global planners written as plugins for the navigation stack must adhere to this interface. */ class BaseGlobalPlanner{ public: /** * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @return True if a valid plan was found, false otherwise */ virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan) = 0; /** * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @param cost The plans calculated cost * @return True if a valid plan was found, false otherwise */ virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan, double& cost) { cost = 0; return makePlan(start, goal, plan); } /** * @brief Initialization function for the BaseGlobalPlanner * @param name The name of this planner * @param costmap_ros A pointer to the ROS wrapper of the costmap to use for planning */ virtual void initialize(std::string name, costmap_2d::Costmap2DROS* costmap_ros) = 0; /** * @brief Virtual destructor for the interface */ virtual ~BaseGlobalPlanner(){} protected: BaseGlobalPlanner(){} }; }; // namespace nav_core #endif // NAV_CORE_BASE_GLOBAL_PLANNER_H

给下列程序添加注释:void DWAPlannerROS::initialize( std::string name, tf2_ros::Buffer* tf, costmap_2d::Costmap2DROS* costmap_ros) { if (! isInitialized()) { ros::NodeHandle private_nh("~/" + name); g_plan_pub_ = private_nh.advertise("global_plan", 1); l_plan_pub_ = private_nh.advertise("local_plan", 1); tf_ = tf; costmap_ros_ = costmap_ros; costmap_ros_->getRobotPose(current_pose_); // make sure to update the costmap we'll use for this cycle costmap_2d::Costmap2D* costmap = costmap_ros_->getCostmap(); planner_util_.initialize(tf, costmap, costmap_ros_->getGlobalFrameID()); //create the actual planner that we'll use.. it'll configure itself from the parameter server dp_ = boost::shared_ptr<DWAPlanner>(new DWAPlanner(name, &planner_util_)); if( private_nh.getParam( "odom_topic", odom_topic_ )) { odom_helper_.setOdomTopic( odom_topic_ ); } initialized_ = true; // Warn about deprecated parameters -- remove this block in N-turtle nav_core::warnRenamedParameter(private_nh, "max_vel_trans", "max_trans_vel"); nav_core::warnRenamedParameter(private_nh, "min_vel_trans", "min_trans_vel"); nav_core::warnRenamedParameter(private_nh, "max_vel_theta", "max_rot_vel"); nav_core::warnRenamedParameter(private_nh, "min_vel_theta", "min_rot_vel"); nav_core::warnRenamedParameter(private_nh, "acc_lim_trans", "acc_limit_trans"); nav_core::warnRenamedParameter(private_nh, "theta_stopped_vel", "rot_stopped_vel"); dsrv_ = new dynamic_reconfigure::Server<DWAPlannerConfig>(private_nh); dynamic_reconfigure::Server<DWAPlannerConfig>::CallbackType cb = boost::bind(&DWAPlannerROS::reconfigureCB, this, _1, 2); dsrv->setCallback(cb); } else{ ROS_WARN("This planner has already been initialized, doing nothing."); } }

最新推荐

recommend-type

【视觉SLAM十四讲】特征点法视觉里程计.pdf

在计算机视觉领域,Simultaneous Localization And Mapping(SLAM)是一项关键技术,用于构建环境地图的同时进行自我定位。视觉SLAM利用摄像头捕获的图像序列来估计机器人或设备的位置。ORB(Oriented FAST and ...
recommend-type

基于改进RANSAC与ORB算法的全景图像拼接技术.pptx

这种方法考虑了图像在不同尺度下的变化,通过实时调整和补偿,确保特征点的稳定性,从而提高匹配的准确性和拼接的连续性。 【RANSAC算法】 RANSAC是一种常用的模型估计方法,用于去除异常值(outliers)的影响。在...
recommend-type

华为交换机状态查看常用命令.doc

`display interface brief`或`display interface &lt;interface-name&gt;`可以显示接口的详细状态,包括是否启用、速率、双工模式、接收和发送的数据量等。 7. **查看CPU和内存使用情况**: `display cpu-usage`和`...
recommend-type

cisco各类设备查看信息命令归纳.docx

在Cisco网络设备中,了解和使用正确的命令是管理和维护网络基础设施的关键。以下是一些重要的Cisco命令,它们用于查看网络设备的各种信息: 1. **查看ARP缓存表**: `show ip arp` 命令用于显示地址解析协议(ARP)表...
recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。