f=open("score.csv","r",encoding="utf-8")

时间: 2024-06-16 14:01:27 浏览: 137
在Python中,`f=open("score.csv","r",encoding="utf-8")` 这行代码是用来打开一个名为 "score.csv" 的文件,并以读取("r")模式进行操作。同时,`encoding="utf-8"` 指定了文件内容的字符编码为 UTF-8,这是为了正确处理包含中文等非ASCII字符的数据。 具体解释如下: 1. `f`: 这是一个变量名,通常用来存储文件对象,后续的文件操作会通过这个变量引用。 2. `"score.csv"`: 这是文件的路径和名称,假设文件位于程序运行当前目录下。 3. `"r"`: 操作模式为只读(read),意味着我们只能查看文件内容,不能写入或修改。 4. `encoding="utf-8"`: 设置文件的字符编码,确保在处理文本时能正确解析非ASCII字符,如中文、日文等。 执行这行代码后,你需要使用 `f.read()` 或者 `for line in f:` 等方法来读取文件内容。如果你想要完成文件操作后关闭文件,可以使用 `f.close()`,但在 Python 3 中,文件会自动在对象生命周期结束后关闭,所以通常无需显式调用 `close()` 方法。
相关问题

请对以下这段代码进行解析import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score # 读取训练数据和测试数据 train_data = pd.read_csv('data_train.csv', encoding='utf-8') test_data = pd.read_csv('data_test.csv', encoding='utf-8') # 提取特征向量 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(train_data['title'] + ' ' + train_data['keywords']) X_test = vectorizer.transform(test_data['title'] + ' ' + test_data['keywords']) # 训练模型 model = MultinomialNB() model.fit(X_train, train_data['label']) # 预测结果 y_pred = model.predict(X_test) # 输出分类结果 with open('lab4_result.txt', 'w', encoding='utf-8') as f: for i, y in enumerate(y_pred): f.write('学号***姓名***{}\n'.format(y))

这段代码使用了机器学习中的朴素贝叶斯分类器来进行文本分类。具体步骤如下: 1. 导入所需的库,包括 pandas、sklearn.feature_extraction.text 中的 TfidfVectorizer 和 sklearn.naive_bayes 中的 MultinomialNB,以及 sklearn.metrics 中的 accuracy_score。 2. 读取训练数据和测试数据,分别存储在 train_data 和 test_data 变量中,使用 pandas 库中的 read_csv 函数从 csv 文件中读取数据。 3. 对训练数据和测试数据进行特征提取,使用 TfidfVectorizer 函数将每个文本转换为 TF-IDF 特征向量。这里将 train_data 中的 'title' 和 'keywords' 字段合并起来,作为文本内容提取特征;同样地,将 test_data 中的 'title' 和 'keywords' 字段合并起来,生成与训练数据相同的特征向量空间。 4. 构建朴素贝叶斯分类器模型,使用 MultinomialNB 函数构建一个 Multinomial Naive Bayes 分类器,存储在 model 变量中。 5. 使用训练数据对模型进行训练,使用 fit 函数将模型与训练数据拟合,得到训练好的分类器模型。 6. 利用训练好的模型对测试数据进行分类预测,使用 predict 函数对 X_test 进行分类预测,得到分类结果 y_pred。 7. 将分类结果写入文件,使用 with open 函数打开一个文件,将分类结果写入文件中,其中 i 为索引,y 为分类结果。 需要注意的是,此处只是一个简单的文本分类模型,还有很多可以优化的地方,比如对文本进行预处理、调整模型参数等。

优化import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB #加载 CSV 文件并忽略错误行 try: train_df = pd.read_csv('train.csv', encoding='utf-8') except: pass try: test_df = pd.read_csv('test.csv', encoding='utf-8') except: pass #删除无效行 train_df.dropna(inplace=True) test_df.dropna(inplace=True) #划分训练集和测试集 X_train = train_df['content'] y_train = train_df['category'] X_test = test_df['content'] y_test = test_df #特征提取 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(X_train) X_test = vectorizer.transform(X_test) #训练模型 model = MultinomialNB() model.fit(X_train, y_train) #测试模型 score = model.score(X_test, y_test) print('Accuracy:', score)

这段代码看起来已经很优化了,但是还有一些可以改进的地方: 1. 在加载 CSV 文件时,可以使用 with open() as f 和 csv.reader(f) 的方式来读取文件,这样可以避免因为文件未关闭而导致的内存泄漏。 2. 在删除无效行之前,最好先检查一下数据集是否存在无效值。可以使用 train_df.isnull().sum() 来检查每列的缺失值数量,如果发现某列缺失值数量较多,可以选择删除该列或者使用其他方法来填充缺失值。 3. 在测试模型时,y_test 应该是测试集的标签,而不是整个测试集。可以使用 y_test = test_df['category'] 来获取测试集的标签。 改进后的代码如下: ```python import csv import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB # 加载 CSV 文件并忽略错误行 with open('train.csv', 'r', encoding='utf-8') as f: reader = csv.reader(f) train_df = pd.DataFrame(reader) train_df.dropna(inplace=True) with open('test.csv', 'r', encoding='utf-8') as f: reader = csv.reader(f) test_df = pd.DataFrame(reader) test_df.dropna(inplace=True) # 划分训练集和测试集 X_train = train_df[1] y_train = train_df[0] X_test = test_df[1] y_test = test_df[0] # 特征提取 vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(X_train) X_test = vectorizer.transform(X_test) # 训练模型 model = MultinomialNB() model.fit(X_train, y_train) # 测试模型 score = model.score(X_test, y_test) print('Accuracy:', score) ```
阅读全文

相关推荐

#加载模块 import csv import os import re import jieba import pandas as pd #设置读取情感词典的函数 def read_dict(file): my_dict=open(file).read() wordlist=re.findall(r'[\u4e00-\u9fa5]+',my_dict) return wordlist positive=read_dict('C:/Users/xiaomei/Desktop/reports/positive.txt') negative=read_dict('C:/Users/xiaomei/Desktop/reports/negative.txt') #读取csv文件,并进行处理 results={} with open('C:/Users/xiaomei/Desktop/report.csv', 'r', encoding='utf-8') as f: reader=csv.reader(f) for row in reader: text=row[2] text=re.sub(r'[^\u4e00-\u9fa5]+',' ',text) words=jieba.cut(text) #自定义情感分析函数 def senti_count(text): wordlist1=jieba.lcut(text) wordlist1=[w for w in wordlist1 if len(w)>1] positive_count=0 for positive_word in positive: positive_count=positive_count+wordlist1.count(positive_word) negative_count=0 for negative_word in negative: negative_count=negative_count+wordlist1.count(negative_word) return {'word_num':len(wordlist1),'positive_num':positive_count,'negative_num':negative_count} #生成保存路径 csvf=open('C:/Users/xiaomei/Desktop/情感分析.csv','w',encoding = 'gbk',newline = '') writer=csv.writer(csvf) writer.writerow(('公司名称','年份','总词汇数','正面情感词汇数','负面情感词汇数')) senti_score=senti_count(text) word_num = senti_score['word_num'] positive_num = senti_score['positive_num'] negative_num = senti_score['negative_num'] writer.writerow((company,year,word_num,positive_num,negative_num)) csvf.close()

print("开始执行推荐算法....") #spark.sql(etl_sql).write.jdbc(mysql_url, 'task888', 'overwrite', prop) # 获取:用户ID、房源ID、评分 etl_rdd = spark.sql(etl_sql).select('user_id', 'phone_id', 'action_core').rdd rdd = etl_rdd.map(lambda x: Row(user_id=x[0], book_id=x[1], action_core=x[2])).map(lambda x: (x[2], x[1], x[0])) # 5.训练模型 model = ALS.train(rdd, 10, 10, 0.01) # 7.调用模型 products_for_users_list = model.recommendProductsForUsers(10).collect() # 8.打开文件,将推荐的结果保存到data目录下 out = open(r'data_etl/recommend_info.csv', 'w', newline='', encoding='utf-8') # 9.设置写入模式 csv_write = csv.writer(out, dialect='excel') # 10.设置用户csv文件头行 user_head = ['user_id', 'phone_id', 'score'] # 12.写入头行 csv_write.writerow(user_head) # 13.循环推荐数据 for i in products_for_users_list: for value in i[1]: rating = [value[0], value[1], value[2]] # 写入数据 csv_write.writerow(rating) print("推荐算法执行结束,开始加工和变换推荐结果....") # 14.读取推荐的结果 recommend_df = spark \ .read \ .format('com.databricks.spark.csv') \ .options(header='true', inferschema='true', ending='utf-8') \ .load("data_etl/recommend_info.csv") # 注册临时表 recommend_df.createOrReplaceTempView("recommend") # 构造 spark执行的sql recommend_sql = ''' SELECT a.user_id, a.phone_id, bid,phone_name, phone_brand, phone_price, phone_memory ,phone_screen_size,ROUND(score,1) score FROM recommend a,phone b WHERE a.phone_id=b.phone_id ''' # 执行spark sql语句,得到dataframe recommend_df = spark.sql(recommend_sql) # 将推荐的结果写入mysql recommend_df.write.jdbc(mysql_url, 'recommend', 'overwrite', prop) 解释一下这段代码

import csv import requests from lxml import etree #爬取的页面 url = "https://movie.douban.com/explore" #定义请求头 headers = { "User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" } #获取html字符串 response = requests.get(url,headers=headers) content = response.content.decode('utf8') #将html字符串解析 html = etree.HTML(content) #Xpath获取总框架 trs = html.xpath('//div[@class="drc-subject-info"]') #定义一个列表来存储数据 mv_data = [] #for循环遍历总框架,for循环内部的.指的是当前框架下的内容匹配 for tr in trs: #定义一个集合存储 eg = {} #在上面的框架下爬取电影的标题 title = tr.xpath('./div[@class="drc-subject-info-title"]/span/text()')[0].strip() #在上面的框架下爬取电影的年份、类型、主演 information = tr.xpath('./div[@class="drc-subject-info-title"]/div[@class="drc-subject-info-subtitle"]/text()')[0].strip() #在上面的框架下爬取电影的评分 score = tr.xpath('./div[@class="drc-rating drc-subject-info-rating m"]/span[@class="drc-rating-num"]/text()')[0].strip() #定义一个字段来存储key,value的结构 eg = { "title":title, "information":information, "score":score } #在hots列表中添加eg字典的内容 mv_data.append(eg) with open("mv_data.csv","a",encoding="utf8",newline="") as f: #设置字段名(列表名) filenames = ['title','information','score'] #定义开头 writer = csv.DictWriter(f,fieldnames=filenames) #写入开头 writer.writeheader() # 打印 print(mv_data) #内容 writer.writerows(mv_data) #打印写入完成 print("数据已写入")

最新推荐

recommend-type

基于 C++构建 Qt 实现的 GDAL 与 PROJ4 的遥感图像处理软件课程设计

【作品名称】:基于 C++构建 Qt 实现的 GDAL 与 PROJ4 的遥感图像处理软件【课程设计】 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】: 用于处理包括*.img、*.tif、*.jpg、*.bmp、*.png等格式,不同位深的遥感图像。旨在提供简洁的用户界面与清晰的操作逻辑。软件囊括了基本的遥感图像处理功能,例如增强、边缘检测等,并提供了一种变化检测方法。 引用库 本软件基于 GDAL 与 Qt 在 C++ 环境下构建,地理信息处理部分使用了开源库 Proj.4 库,部分功能引用了 OpenCV 计算机视觉库 【资源声明】:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。需要有一定的基础看懂代码,自行调试代码并解决报错,能自行添加功能修改代码。
recommend-type

【java毕业设计】娜娜服装企业物流管理系统源码(完整前后端+说明文档+LW).zip

本系统包括普通员工、管理员两种角色,各个角色的具体功能如下: (1)普通员工具有的权限功能如下: ① 员工信息管理:对员工信息进行增删改查。 ② 服装信息管理:对服装公司的衣服信息进行增删改查。 ③ 库存信息管理:可以查看仓库的服装数量。 ④ 车辆信息管理:员工可以查询车辆信息:车牌号,编号,司机等。 ⑤ 服装配送管理:可以查看服装配送情况,车辆等。 (2)管理员具有的权限功能如下: ① 账号信息管理:对员工的账号进行管理。 ② 用户信息管理:当前企业的用户信息管理。 ③ 员工信息管理:对员工信息进行增删改查。 ④ 服装信息管理:对服装公司的衣服信息进行增删改查。 ⑤ 库存信息管理:可以查看仓库的服装数量。 ⑥ 车辆信息管理:员工可以查询车辆信息:车牌号,编号,司机等。 ⑦ 服装配送管理:可以查看服装配送情况,车辆等。 环境说明: 开发语言:Java,jsp JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea 部署容器:tomcat
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

PROTEUS符号定制指南:个性化元件创建与修改的全面攻略

![PROTEUS符号定制指南:个性化元件创建与修改的全面攻略](https://circuits-diy.com/wp-content/uploads/2020/05/74LS00-pinout.png) 参考资源链接:[Proteus电子元件符号大全:从二极管到场效应管](https://wenku.csdn.net/doc/1fahxsg8um?spm=1055.2635.3001.10343) # 1. PROTEUS符号定制基础知识 PROTEUS符号定制是电子工程设计中不可或缺的一环,它允许设计者创建和修改电路元件符号,以符合特定的设计需求。本章将为你提供关于PROTEUS符号
recommend-type

https://www.lagou.com/wn/爬取该网页职位名称,薪资待遇,学历,企业类型,工作地点数据保存为CSV文件的python代码

首先,你需要使用Python的requests库来获取网页内容,然后使用BeautifulSoup解析HTML,提取所需信息。由于这个链接指向的是拉勾网的搜索结果页面,通常这类网站会有反爬虫机制,所以你可能需要设置User-Agent,模拟浏览器访问,并处理可能的登录验证。 以下是一个基本的示例,注意这只是一个基础模板,实际操作可能需要根据网站的具体结构进行调整: ```python import requests from bs4 import BeautifulSoup import csv # 模拟浏览器头信息 headers = { 'User-Agent': 'Mozi