In a connected graph, the number of edges must be greater than the number of vertices minus 1.
时间: 2023-12-29 07:05:35 浏览: 400
这个命题是错误的。在一个连通图中,边的数量必须大于等于顶点数减1,而不是大于。这个结论可以通过归纳法证明。当顶点数为1时,边数为0,命题成立。假设当顶点数为n时,命题成立。现在考虑顶点数为n+1的情况。我们可以选择一个顶点作为根节点,然后将其余的n个顶点分成若干个连通子图。对于每个子图,根节点与子图中的某个顶点之间有一条边。因此,根节点的度数至少为n,而根节点之外的n个顶点的度数之和为偶数(根据引用)。因此,整个图的度数之和为偶数。由于每条边都连接两个顶点,因此边的数量为顶点度数之和的一半。因此,边的数量为偶数,因此边的数量至少为(n+1)-1=n。因此,当顶点数为n+1时,命题也成立。因此,对于所有n,命题都成立。
相关问题
You are given an undirected complete graph on n vertices. A complete graph is a graph where each pair of vertices is connected by an edge. You have to paint the edges of the graph into two colors, red and blue (each edge will have one color). A set of vertices S is red-connected if, for every pair of vertices (v1,v2) such that v1∈S and v2∈S, there exists a path from v1 to v2 that goes only through red edges and vertices from S. Similarly, a set of vertices S is blue-connected if, for every pair of vertices (v1,v2) such that v1∈S and v2∈S, there exists a path from v1 to v2 that goes only through blue edges and vertices from S. You have to paint the graph in such a way that: there is at least one red edge; there is at least one blue edge; for each set of vertices S such that |S|≥2, S is either red-connected or blue-connected, but not both. Calculate the number of ways to paint the graph, and print it modulo 998244353.
给定一个n个顶点的无向完全图。完全图是指每对顶点之间都有一条边相连的图。你需要将图中的边涂上红色和蓝色两种颜色(每条边只能有一种颜色)。一组顶点S是红色连通的,如果对于任意一对顶点(v1,v2),满足v1∈S且v2∈S,都存在一条从v1到v2的路径,该路径只经过红色边和S中的顶点。同样,一组顶点S是蓝色连通的,如果对于任意一对顶点(v1,v2),满足v1∈S且v2∈S,都存在一条从v1到v2的路径,该路径只经过蓝色边和S中的顶点。你需要涂色使得:至少有一条红色边,至少有一条蓝色边;对于每一组顶点S,满足|S|≥2,S要么是红色连通的,要么是蓝色连通的,但不能既是红色连通又是蓝色连通。请计算出涂色的方案数,并将其对 998244353 取模后输出。
阅读全文