python样条差值
时间: 2023-10-15 10:26:35 浏览: 93
yangtiao.rar_样条 差值
在Python中,可以使用scipy库中的interp1d函数来进行样条插值。interp1d函数的原型是:interp1d(x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=nan, assume_sorted=False) 。
下面是一个使用interp1d函数进行样条插值的例子:
```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
x = np.array([0,1,2,3,4,5,6,7])
y = np.array([1.11,2.22,3.34,4.13,3,2.25,1,1.5])
xx = np.linspace(x.min(), x.max(), 100)
plt.scatter(x, y)
f = interp1d(x, y, kind='cubic')
ynew = f(xx)
plt.plot(xx, ynew, 'b')
plt.show()
```
上述代码中,我们首先定义了一组已知的点(x, y),然后使用interp1d函数创建了一个样条插值函数f。接着,我们生成了更多的点(xx),并使用插值函数f计算了相应的函数值ynew。最后,将原始数据点(x, y)和插值曲线(xx, ynew)绘制在图像上 。
除了interp1d函数外,scipy.interpolate包中还有其他模块可以实现对已知点进行插值,例如interp1d。通过使用这些插值函数,我们可以计算其他x值对应的y值,这正是插值的主要用途 [3]。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [python样条插值(二)](https://blog.csdn.net/qingchedeyongqi/article/details/116766927)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [python数学建模(样条插值)](https://blog.csdn.net/m0_59309242/article/details/119493352)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文