SGD: 随机梯度下降优化器。 Momentum: 动量优化器。 Nesterov: Nesterov加速梯度优化器。 AdaGrad: AdaGrad优化器。 RMSprop: RMSprop优化器。 Adam: Adam优化器。是分布学习方法吗
时间: 2024-12-13 20:13:07 浏览: 13
Keras SGD 随机梯度下降优化器参数设置方式
这些优化器都是用于机器学习模型训练过程中的参数更新算法,它们并非分布式学习方法本身,而是帮助单台计算机提升学习效率的工具。
1. **随机梯度下降(SGD)**:这是一种基本的优化算法,每次迭代只考虑样本的一个随机梯度,适合大数据集,但它可能会在平坦区域徘徊或震荡。
2. **动量(Momentum)**:引入了一个"记忆"机制,即结合当前梯度和过去移动的方向,使得搜索方向更加稳定,有助于跳出局部极小值。
3. **Nesterov加速梯度(Nesterov Accelerated Gradient, NAG)**:在动量的基础上提前一步计算,预计未来的位置,进一步加速梯度下降的过程。
4. **AdaGrad**:自适应学习率算法,对每一个参数都维护一个单独的学习率,对于稀疏数据特别有效,但长期而言,学习率可能会过早变得非常小。
5. **RMSprop (Root Mean Square Propagation)**:在AdaGrad基础上改进,采用指数移动平均来调整学习率,更好地平衡全局和局部的梯度影响。
6. **Adam**:一种结合了动量和RMSprop的优化器,它使用了动量项和学习率衰减,能够适应不同的权重更新,尤其在深度学习中广泛应用。
以上优化器都不是分布式学习方法,因为它们主要针对的是单个设备上模型的训练。然而,有些变体如Mini-batch SGD是在分布式环境下常用的一种策略,将数据分成小批次进行并行计算。而真正的分布式学习方法,如Spark、Hadoop等,会涉及到多台计算机间的协同工作。
阅读全文