vit模型训练结果带有损失函数和各种训练图的代码
时间: 2024-09-18 08:13:20 浏览: 42
VIT(Vision Transformer)模型是一种基于Transformer架构的图像识别模型,其训练通常涉及到PyTorch这样的深度学习框架。以下是使用PyTorch进行ViT模型训练的基本代码示例,其中包含了损失函数和训练图:
```python
import torch
import torch.nn as nn
from torchvision import datasets, transforms
# 定义ViT模型
class ViTModel(nn.Module):
# ... (模型结构定义)
def train_vit(model, dataloader, criterion, optimizer, device):
model.train()
running_loss = 0.0
for batch_idx, (data, target) in enumerate(dataloader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad() # 清空梯度
outputs = model(data) # 前向传播
loss = criterion(outputs, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新权重
running_loss += loss.item() * data.size(0) # 累加每个批次的损失
avg_loss = running_loss / len(dataloader.dataset) # 平均损失
return avg_loss
# 初始化模型、损失函数(如交叉熵Loss)、优化器(如Adam),并选择设备(GPU或CPU)
model = ViTModel().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 准备数据加载器
train_loader = ... # 使用transforms构建的数据加载器
for epoch in range(num_epochs):
train_loss = train_vit(model, train_loader, criterion, optimizer, device)
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {train_loss}")
# 训练过程中可以保存训练图,比如使用TensorBoard记录loss值,这需要额外安装TensorBoard库
# tensorboard_logs = SummaryWriter(log_dir="runs/vit_training")
# tensorboard_logs.add_scalar('Training/Loss', train_loss, global_step=epoch)
```
阅读全文