yolov8调用摄像头实时监测
时间: 2023-10-29 11:05:31 浏览: 392
要使用YOLOv8调用摄像头进行实时监测,可以按照以下步骤进行:
1. 安装OpenCV和YOLOv8
2. 下载YOLOv8的权重文件和配置文件
3. 使用OpenCV打开摄像头
4. 对于每一帧图像,使用YOLOv8进行目标检测
5. 在图像上绘制检测结果并显示
下面是一个简单的示例代码:
```python
import cv2
import numpy as np
# Load YOLOv8
net = cv2.dnn.readNet("yolov8.weights", "yolov8.cfg")
# Load classes
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# Set up camera
cap = cv2.VideoCapture(0)
while True:
# Read frame from camera
ret, frame = cap.read()
# Create blob from frame
blob = cv2.dnn.blobFromImage(frame, 1/255, (416, 416), swapRB=True, crop=False)
# Set input to YOLOv8 network
net.setInput(blob)
# Get output layer names
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# Run forward pass on YOLOv8 network
outputs = net.forward(output_layers)
# Process outputs
boxes = []
confidences = []
class_ids = []
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * frame.shape[1])
center_y = int(detection[1] * frame.shape[0])
w = int(detection[2] * frame.shape[1])
h = int(detection[3] * frame.shape[0])
x = center_x - w // 2
y = center_y - h // 2
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# Apply non-max suppression
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# Draw boxes and labels on frame
if len(indices) > 0:
for i in indices.flatten():
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = (0, 255, 0)
cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2)
cv2.putText(frame, f"{label} {confidence:.2f}", (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Show frame
cv2.imshow("YOLOv8", frame)
# Exit on 'q' key press
if cv2.waitKey(1) == ord('q'):
break
# Release resources
cap.release()
cv2.destroyAllWindows()
```
阅读全文