python 自适应粒子群算法实现多目标优化代码
时间: 2023-08-04 07:07:41 浏览: 108
当然,我可以帮你提供一个 Python 的自适应粒子群算法实现多目标优化的代码示例。以下是一个简单的例子:
```python
import random
class Particle:
def __init__(self, position):
self.position = position
self.velocity = [random.uniform(-1, 1) for _ in range(len(position))]
self.best_position = self.position.copy()
def update_velocity(self, global_best_position, c1, c2):
for i in range(len(self.velocity)):
r1 = random.random()
r2 = random.random()
cognitive_component = c1 * r1 * (self.best_position[i] - self.position[i])
social_component = c2 * r2 * (global_best_position[i] - self.position[i])
self.velocity[i] += cognitive_component + social_component
def update_position(self):
self.position = [self.position[i] + self.velocity[i] for i in range(len(self.position))]
def evaluate_fitness(self):
# 根据具体问题定义适应度函数
fitness1 = ...
fitness2 = ...
return [fitness1, fitness2]
def adaptive_pso(n_iterations, n_particles, n_dimensions, c1, c2):
particles = [Particle([random.uniform(0, 1) for _ in range(n_dimensions)]) for _ in range(n_particles)]
global_best_position = None
for _ in range(n_iterations):
for particle in particles:
fitness = particle.evaluate_fitness()
if not particle.best_position or fitness < particle.evaluate_fitness():
particle.best_position = particle.position.copy()
if not global_best_position or fitness < particle.evaluate_fitness():
global_best_position = particle.position.copy()
particle.update_velocity(global_best_position, c1, c2)
particle.update_position()
return global_best_position
# 示例用法
n_iterations = 100
n_particles = 50
n_dimensions = 2
c1 = 2.0
c2 = 2.0
result = adaptive_pso(n_iterations, n_particles, n_dimensions, c1, c2)
print("Global best position:", result)
```
请注意,上述代码只是一个简单的示例,你需要根据你的具体问题定义适应度函数,并根据实际需求进行修改和调整。希望对你有所帮助!如果有任何问题,请随时提问。
阅读全文