使用Python的Scrapy或BeautifulSoup等库来构建爬虫。针对小红书搜索预制菜相关话题,爬取笔记内容里的评价(如好吃、方便等正面评价和不新鲜等负面评价)来获取口碑数据。通过点赞、收藏、评论数量大致估算热度,结
时间: 2024-12-11 18:25:34 浏览: 40
在Python中,利用Scrapy和BeautifulSoup这两个强大的库来构建爬虫可以让你轻松地抓取网络数据。以下是简要步骤:
1. 安装依赖:首先需要安装`scrapy`和`bs4`(BeautifulSoup的Python库),可以使用`pip install scrapy beautifulsoup4`命令。
2. 创建项目:打开终端或命令行,创建一个新的Scrapy项目:
```
scrapy startproject redbook_crawler
```
3. 设计Spiders:进入项目目录,创建一个新的Spider(例如`recipes_spider.py`)并设置目标URL(小红书的预制菜搜索结果页):
```python
import scrapy
class RecipesSpider(scrapy.Spider):
name = 'recipes'
allowed_domains = ['xiaohongshu.com']
start_urls = ['https://www.xiaohongshu.com/explore/tags/%E9%85%8D%E7%BB%84%E8%B5%84']
def parse(self, response):
# 使用BeautifulSoup解析HTML
soup = BeautifulSoup(response.text, 'lxml')
notes = soup.find_all('div', class_='NoteItem') # 查找笔记元素
for note in notes:
# 提取评价内容、点赞、收藏、评论信息
review = note.find('span', class_='Text--m')
if review:
print(review.text)
# 通过其他CSS选择器提取点赞、收藏和评论数
likes = note.find('div', class_='StatItem StatItem--like')
saves = note.find('div', class_='StatItem StatItem--save')
comments = note.find('div', class_='StatItem StatItem--comment')
yield {
'review': review.text,
'likes': likes.text.strip() if likes else None,
'saves': saves.text.strip() if saves else None,
'comments': comments.text.strip() if comments else None,
}
```
4. 运行爬虫:保存文件后,在命令行运行`scrapy crawl recipes`,开始抓取数据。注意,由于小红书可能会有反爬机制,实际操作时可能需要处理登录、频率限制等问题,并遵守网站的使用协议。
阅读全文
相关推荐


















