A-PRelu怎么样pytorch实现
时间: 2023-08-01 18:07:32 浏览: 111
在PyTorch中实现A-PRelu(自适应参数整流线性单元)可以按照以下步骤进行:
1. 首先,导入PyTorch库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
2. 定义A-PRelu激活函数的类:
```python
class A_PReLU(nn.Module):
def __init__(self, num_parameters=1, init_alpha=0.25):
super(A_PReLU, self).__init__()
self.alpha = nn.Parameter(torch.Tensor(num_parameters).fill_(init_alpha))
def forward(self, x):
pos = F.relu(x)
neg = -self.alpha * F.relu(-x)
return pos + neg
```
3. 使用A-PRelu激活函数替换ResNet-18模型中的ReLU层。例如,替换ResNet-18的基本块中的ReLU层:
```python
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.aprelu1 = A_PReLU(out_channels) # 使用A-PRelu激活函数替代ReLU
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.aprelu2 = A_PReLU(out_channels) # 使用A-PRelu激活函数替代ReLU
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),
nn.BatchNorm2d(out_channels)
)
else:
self.shortcut = nn.Identity()
def forward(self, x):
residual = self.shortcut(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.aprelu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.aprelu2(out)
out += residual
out = F.relu(out)
return out
```
通过以上步骤,你就可以在PyTorch中实现A-PRelu激活函数,并将其应用于ResNet-18模型中的相应层。记得在训练过程中进行适当的初始化和优化器设置。
阅读全文