编写scala 工程代码,将mysql的shtd_store 库中表orders、lineitem 增量抽取到hive
时间: 2023-10-27 15:03:37 浏览: 247
编写scala工程代码,将MySQL的shtd_store库中的表orders和lineitem的增量数据抽取到Hive可以通过以下步骤实现:
1. 导入必要的库:
```scala
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.functions._
```
2. 配置SparkSession:
```scala
val spark = SparkSession.builder()
.appName("MySQL to Hive Incremental Extract")
.config("spark.sql.warehouse.dir", "/user/hive/warehouse")
.enableHiveSupport()
.getOrCreate()
```
3. 定义MySQL和Hive的连接信息:
```scala
val mysqlURL = "jdbc:mysql://localhost:3306/shtd_store"
val mysqlUser = "your_mysql_username"
val mysqlPassword = "your_mysql_password"
val hiveDB = "your_hive_database"
val hiveOrdersTable = "orders"
val hiveLineItemTable = "lineitem"
```
4. 从MySQL中读取最新的增量数据:
```scala
val ordersDF = spark.read
.format("jdbc")
.option("url", mysqlURL)
.option("user", mysqlUser)
.option("password", mysqlPassword)
.option("dbtable", "shtd_store.orders")
.load()
val lineItemDF = spark.read
.format("jdbc")
.option("url", mysqlURL)
.option("user", mysqlUser)
.option("password", mysqlPassword)
.option("dbtable", "shtd_store.lineitem")
.load()
```
5. 如果Hive中已存在orders和lineitem表,则将读取到的最新数据与Hive表中原有的数据合并:
```scala
val existingOrdersDF = spark.table(s"$hiveDB.$hiveOrdersTable")
val existingLineItemDF = spark.table(s"$hiveDB.$hiveLineItemTable")
val mergedOrdersDF = ordersDF.union(existingOrdersDF).distinct()
val mergedLineItemDF = lineItemDF.union(existingLineItemDF).distinct()
```
6. 将合并后的数据写入Hive表:
```scala
mergedOrdersDF.write
.format("hive")
.mode("append")
.saveAsTable(s"$hiveDB.$hiveOrdersTable")
mergedLineItemDF.write
.format("hive")
.mode("append")
.saveAsTable(s"$hiveDB.$hiveLineItemTable")
```
7. 完成增量抽取后,关闭SparkSession:
```scala
spark.stop()
```
以上代码能够将MySQL中的shtd_store库中的orders和lineitem表的增量数据抽取到Hive中,并将新数据与原有数据进行合并。注意替换相关连接信息和表名称,以适应你的实际情况。
阅读全文