python 怎么画PCOA图的置信区间
时间: 2024-10-16 11:19:56 浏览: 19
在Python中,你可以使用`scikit-bio`库结合`matplotlib`或`seaborn`等可视化工具来绘制PCOAs(Principal Coordinate Analysis)的置信区间。PCOAs是一种多元生物统计分析方法,用于展示样品在高维数据集中的相对位置。
首先,你需要安装所需的库:
```bash
pip install scikit-bio matplotlib seaborn
```
然后,你可以通过以下步骤创建PCOA并添加置信区间的示例:
1. 导入库:
```python
import numpy as np
from skbio import DistanceMatrix
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme(style="whitegrid")
```
2. 加载或生成距离矩阵数据:
```python
# 假设你已经有了一个DistanceMatrix对象,比如从OTU表转换而来
distance_matrix = DistanceMatrix.load('your_distance_matrix.txt')
# 如果是OTU表,可以先计算欧氏距离或其他合适的度量:
# distance_matrix = DistanceMatrix(df['otu_table'].as_matrix(), metric='euclidean')
```
3. 计算PCoA并提取坐标轴数据:
```python
pcoa_results = distance_matrix.pcoa()
pcoa_df = pd.DataFrame(np.c_[pcoa_results.samples['coordinates'],
pcoa_results.proportion_explained],
columns=['PC1', 'PC2', 'Eigenvalue'])
```
4. 添加置信区间:
```python
# 使用bootstrapping来估计95%置信区间
n_bootstraps = 1000
bootstrap_coordinates = pcoa_results.bootstrapped_coordinates(n_bootstraps)
confidence_intervals = bootstrap_coordinates.apply(lambda x: np.percentile(x, [2.5, 97.5], axis=0), axis=1)
# 将置信区间添加到DataFrame中
pcoa_df['lower_CI'] = confidence_intervals[:, 0]
pcoa_df['upper_CI'] = confidence_intervals[:, 1]
```
5. 绘制PCOAs:
```python
fig, ax = plt.subplots(figsize=(8, 6))
sns.scatterplot(data=pcoa_df, x='PC1', y='PC2', color='black', alpha=0.6)
for i in range(len(pcoa_df)):
ax.plot([pcoa_df.loc[i, 'PC1'], confidence_intervals.loc[i, 'lower_CI'][0]],
[pcoa_df.loc[i, 'PC2'], confidence_intervals.loc[i, 'lower_CI'][1]], c='gray', linestyle='dashed')
ax.plot([pcoa_df.loc[i, 'PC1'], confidence_intervals.loc[i, 'upper_CI'][0]],
[pcoa_df.loc[i, 'PC2'], confidence_intervals.loc[i, 'upper_CI'][1]], c='gray', linestyle='dashed')
ax.set_title("PCoA with 95% Confidence Intervals")
plt.show()
阅读全文