tensorflow_federated手写数字识别mnist数据集联邦学习代码
时间: 2023-11-25 11:49:32 浏览: 137
Tensorflow实现Mnist手写数据集的识别
以下是使用TensorFlow Federated进行手写数字识别MNIST数据集联邦学习的代码:
```python
import tensorflow as tf
import tensorflow_federated as tff
# 加载MNIST数据集
mnist_train, mnist_test = tf.keras.datasets.mnist.load_data()
# 定义模型
def create_keras_model():
return tf.keras.models.Sequential([
tf.keras.layers.Input(shape=(28, 28)),
tf.keras.layers.Reshape(target_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation='softmax')
])
# 定义TFF模型
def model_fn():
keras_model = create_keras_model()
return tff.learning.from_keras_model(
keras_model,
input_spec=mnist_train[0].shape,
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
# 定义TFF联邦平均算法
iterative_process = tff.learning.build_federated_averaging_process(
model_fn,
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.02),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))
# 训练模型
state = iterative_process.initialize()
for round_num in range(10):
state, metrics = iterative_process.next(state, [mnist_train])
print('round {:2d}, metrics={}'.format(round_num, metrics))
# 评估模型
evaluation = tff.learning.build_federated_evaluation(model_fn)
test_metrics = evaluation(state.model, [mnist_test])
print('Test metrics: {}'.format(test_metrics))
```
阅读全文