os.path.isdir() #检验

时间: 2024-08-15 16:05:26 浏览: 41
`os.path.isdir()` 是Python标准库 `os.path` 中的一个函数,用于判断给定路径是否为目录(即是否指向一个存在并且是一个目录的文件)。它返回一个布尔值:如果路径确实是一个目录,则返回 True;如果不是目录(比如路径不存在或者指向的是文件),则返回 False。 下面是如何使用 `os.path.isdir()` 函数的例子: ```python import os # 检查当前工作目录是否是一个目录 if os.path.isdir('.'): print("当前目录是一个存在的目录") else: print("当前目录可能不存在或不是一个目录") # 创建一个新目录并检查它是否存在 try: os.mkdir('/tmp/new_dir') except FileExistsError: pass # 已经存在这个目录 new_dir_path = '/tmp/new_dir' if os.path.isdir(new_dir_path): print(f"{new_dir_path} 是一个存在的目录") else: print(f"{new_dir_path} 不是一个目录或不存在") ``` ### 相关问题 - os.path.isdir(): 1. 如何确保在执行操作之前文件夹已存在? 2. `os.path.isdir()` 能否检测符号链接指向的是目录还是文件? 3. 如果目录不存在时调用 `os.path.isdir()`,会发生什么?
相关问题

详细解释一下这段代码,每一句都要进行注解:for dataset in datasets: print(dataset) if dataset not in out_results: out_results[dataset] = {} for scene in data_dict[dataset]: print(scene) # Fail gently if the notebook has not been submitted and the test data is not populated. # You may want to run this on the training data in that case? img_dir = f'{src}/test/{dataset}/{scene}/images' if not os.path.exists(img_dir): continue # Wrap the meaty part in a try-except block. try: out_results[dataset][scene] = {} img_fnames = [f'{src}/test/{x}' for x in data_dict[dataset][scene]] print (f"Got {len(img_fnames)} images") feature_dir = f'featureout/{dataset}{scene}' if not os.path.isdir(feature_dir): os.makedirs(feature_dir, exist_ok=True) t=time() index_pairs = get_image_pairs_shortlist(img_fnames, sim_th = 0.5644583, # should be strict min_pairs = 33, # we select at least min_pairs PER IMAGE with biggest similarity exhaustive_if_less = 20, device=device) t=time() -t timings['shortlisting'].append(t) print (f'{len(index_pairs)}, pairs to match, {t:.4f} sec') gc.collect() t=time() if LOCAL_FEATURE != 'LoFTR': detect_features(img_fnames, 2048, feature_dir=feature_dir, upright=True, device=device, resize_small_edge_to=600 ) gc.collect() t=time() -t timings['feature_detection'].append(t) print(f'Features detected in {t:.4f} sec') t=time() match_features(img_fnames, index_pairs, feature_dir=feature_dir,device=device) else: match_loftr(img_fnames, index_pairs, feature_dir=feature_dir, device=device, resize_to=(600, 800)) t=time() -t timings['feature_matching'].append(t) print(f'Features matched in {t:.4f} sec') database_path = f'{feature_dir}/colmap.db' if os.path.isfile(database_path): os.remove(database_path) gc.collect() import_into_colmap(img_dir, feature_dir=feature_dir,database_path=database_path) output_path = f'{feature_dir}/colmap_rec_{LOCAL_FEATURE}' t=time() pycolmap.match_exhaustive(database_path) t=time() - t timings['RANSAC'].append(t) print(f'RANSAC in {t:.4f} sec')

这段代码是Python代码,用于图像匹配和三维重建。以下是每行代码的注释: ```python for dataset in datasets: # 遍历数据集列表 print(dataset) # 输出当前数据集 if dataset not in out_results: # 如果当前数据集不在输出结果中 out_results[dataset] = {} # 添加一个空字典作为该数据集的输出结果 for scene in data_dict[dataset]: # 遍历当前数据集中的场景 print(scene) # 输出当前场景 # 如果在测试集中,但该场景的图像数据未被提供,则跳过 img_dir = f'{src}/test/{dataset}/{scene}/images' if not os.path.exists(img_dir): continue try: # 尝试匹配图像并执行三维重建 out_results[dataset][scene] = {} # 添加一个空字典作为该场景的输出结果 img_fnames = [f'{src}/test/{x}' for x in data_dict[dataset][scene]] # 获取当前场景中的图像文件名列表 print(f"Got {len(img_fnames)} images") feature_dir = f'featureout/{dataset}{scene}' # 设置特征输出目录 if not os.path.isdir(feature_dir): # 如果特征输出目录不存在,则创建该目录 os.makedirs(feature_dir, exist_ok=True) t = time() # 获取图像对的候选列表 index_pairs = get_image_pairs_shortlist(img_fnames, sim_th=0.5644583, min_pairs=33, exhaustive_if_less=20, device=device) t = time() - t timings['shortlisting'].append(t) print(f'{len(index_pairs)}, pairs to match, {t:.4f} sec') gc.collect() # 执行垃圾回收以释放内存 t = time() # 如果不使用LoFTR,则检测图像中的特征点 if LOCAL_FEATURE != 'LoFTR': detect_features(img_fnames, 2048, feature_dir=feature_dir, upright=True, device=device, resize_small_edge_to=600) gc.collect() t = time() - t timings['feature_detection'].append(t) print(f'Features detected in {t:.4f} sec') # 匹配图像中的特征点 match_features(img_fnames, index_pairs, feature_dir=feature_dir, device=device) # 如果使用LoFTR,则使用LoFTR进行特征匹配 else: match_loftr(img_fnames, index_pairs, feature_dir=feature_dir, device=device, resize_to=(600, 800)) t = time() - t timings['feature_matching'].append(t) print(f'Features matched in {t:.4f} sec') database_path = f'{feature_dir}/colmap.db' if os.path.isfile(database_path): os.remove(database_path) gc.collect() # 将特征匹配结果导入到COLMAP数据库中 import_into_colmap(img_dir, feature_dir=feature_dir, database_path=database_path) output_path = f'{feature_dir}/colmap_rec_{LOCAL_FEATURE}' t = time() # 使用COLMAP执行RANSAC算法进行三维重建 pycolmap.match_exhaustive(database_path) t = time() - t timings['RANSAC'].append(t) print(f'RANSAC in {t:.4f} sec') except Exception as e: # 捕获任何异常 print(f'Scene {scene} failed. Error: {e}') ``` 此代码的主要目的是使用图像匹配和三维重建技术来重建场景。在此过程中,它使用了许多库和函数,例如os、time、gc、pycolmap等。

yolov7 test.py详解

YoloV7是目标检测算法YOLO的最新版本,相较于之前的版本,它在模型结构、训练策略和速度等方面都有了较大的改进。test.py文件是用于测试已经训练好的模型的脚本,下面是对test.py文件的详细解释: 1. 导入必要的库和模块 ```python import argparse import os import platform import shutil import time from pathlib import Path import cv2 import torch import torch.backends.cudnn as cudnn import numpy as np from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import check_img_size, check_requirements, check_imshow, \ non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging from utils.plots import plot_one_box from utils.torch_utils import select_device, load_classifier, time_synchronized ``` 这里导入了一些必要的库和模块,比如PyTorch、OpenCV、NumPy等,以及用于测试的模型、数据集和一些工具函数。 2. 定义输入参数 ```python parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='data/images', help='source') parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') opt = parser.parse_args() ``` 这里使用Python的argparse库来定义输入参数,包括模型权重文件、输入数据源、推理尺寸、置信度阈值、NMS阈值等。 3. 加载模型 ```python # 加载模型 model = attempt_load(opt.weights, map_location=device) # load FP32 model imgsz = check_img_size(opt.img_size, s=model.stride.max()) # check img_size if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once ``` 这里使用`attempt_load()`函数来加载模型,该函数会根据传入的权重文件路径自动选择使用哪个版本的YoloV7模型。同时,这里还会检查输入图片的大小是否符合模型的要求。 4. 设置计算设备 ```python # 设置计算设备 device = select_device(opt.device) half = device.type != 'cpu' # half precision only supported on CUDA # Initialize model model.to(device).eval() ``` 这里使用`select_device()`函数来选择计算设备(GPU或CPU),并将模型移动到选择的设备上。 5. 加载数据集 ```python # 加载数据集 if os.path.isdir(opt.source): dataset = LoadImages(opt.source, img_size=imgsz) else: dataset = LoadStreams(opt.source, img_size=imgsz) ``` 根据输入参数中的数据源,使用`LoadImages()`或`LoadStreams()`函数来加载数据集。这两个函数分别支持从图片文件夹或摄像头/视频中读取数据。 6. 定义类别和颜色 ```python # 定义类别和颜色 names = model.module.names if hasattr(model, 'module') else model.names colors = [[np.random.randint(0, 255) for _ in range(3)] for _ in names] ``` 这里从模型中获取类别名称,同时为每个类别随机生成一个颜色,用于在图片中绘制框和标签。 7. 定义输出文件夹 ```python # 定义输出文件夹 save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels' if opt.save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir ``` 这里使用`increment_path()`函数来生成输出文件夹的名称,同时创建相应的文件夹。 8. 开始推理 ```python # 开始推理 for path, img, im0s, vid_cap in dataset: t1 = time_synchronized() # 图像预处理 img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() img /= 255.0 if img.ndimension() == 3: img = img.unsqueeze(0) # 推理 pred = model(img)[0] # 后处理 pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # 处理结果 for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], f'{i}: ', im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(save_dir / p.name) txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{counter}') + '.txt' if det is not None and len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() for *xyxy, conf, cls in reversed(det): c = int(cls) label = f'{names[c]} {conf:.2f}' plot_one_box(xyxy, im0, label=label, color=colors[c], line_thickness=3) if opt.save_conf: with open(txt_path, 'a') as f: f.write(f'{names[c]} {conf:.2f}\n') if opt.save_crop: w = int(xyxy[2] - xyxy[0]) h = int(xyxy[3] - xyxy[1]) x1 = int(xyxy[0]) y1 = int(xyxy[1]) x2 = int(xyxy[2]) y2 = int(xyxy[3]) crop_img = im0[y1:y2, x1:x2] crop_path = save_path + f'_{i}_{c}.jpg' cv2.imwrite(crop_path, crop_img) # 保存结果 if opt.nosave: pass elif dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fourcc = 'mp4v' # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0) # 打印结果 print(f'{s}Done. ({t2 - t1:.3f}s)') # 释放资源 if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration elif cv2.waitKey(1) == ord('p'): # p to pause cv2.waitKey(-1) ``` 这里使用一个循环来遍历数据集中的所有图像或视频帧,对每张图像或视频帧进行以下操作: - 图像预处理:将图像转换为PyTorch张量,并进行归一化和类型转换。 - 推理:将图像张量传入模型进行推理,得到预测结果。 - 后处理:对预测结果进行非极大值抑制、类别筛选等后处理操作,得到最终的检测结果。 - 处理结果:对每个检测框进行标签和颜色的绘制,同时可以选择保存检测结果的图片或视频以及标签信息的TXT文件。 - 释放资源:根据按键输入决定是否退出或暂停程序。 9. 总结 以上就是YoloV7的测试脚本test.py的详细解释,通过这个脚本可以方便地测试已经训练好的模型,并对检测结果进行可视化和保存等操作。

相关推荐

最新推荐

recommend-type

java-ssm+jsp在线医疗服务系统实现源码(项目源码-说明文档)

管理员管理医生,药品,预约挂号,购买订单以及用户病例等信息。医生管理坐诊信息,审核预约挂号,管理用户病例。用户查看医生坐诊,对医生预约挂号,在线购买药品。 项目关键技术 开发工具:IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7+ 后端技术:ssm 前端技术:jsp 关键技术:jsp、spring、ssm、MYSQL、MAVEN 数据库工具:Navicat、SQLyog
recommend-type

《基于改进粒子群算法的混合储能系统容量优化》完全复现 matlab 以全生命周期费用最低为目标函数,负荷缺电率作为风光互补发电

《基于改进粒子群算法的混合储能系统容量优化》完全复现 matlab。 以全生命周期费用最低为目标函数,负荷缺电率作为风光互补发电系统的运行指标,得到蓄电池储能和超级电容个数,缺电率和系统最小费用。 粒子群算法:权重改进、对称加速因子、不对称加速因子三种情况的优化结果和迭代曲线。 另包含2020年最新提出的阿基米德优化算法AOA和麻雀搜索算法SSA对该lunwen的实现。 (该算法收敛速度快,不存在pso的早熟收敛)
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

ethernet functionality not enabled socket error#10065 No route to host.

When you encounter an Ethernet functionality not enabled error with a socket error code 10065 "No route to host" while attempting to send or receive data over a network, it typically indicates two issues: 1. **Ethernet Functionality Not Enabled**: This error might be related to your system's networ