yolov8对比yolov7
时间: 2023-09-10 18:12:50 浏览: 143
yolov8相对于yolov7进行了一些改进和创新。首先,yolov8在网络结构方面进行了调整,加入了一些新的模块和技术。其次,yolov8在目标检测的准确性和速度方面进行了优化。具体来说,以下是yolov8相对于yolov7的一些改进点:
1. 网络结构改进:yolov8采用了更深的网络结构,引入了更多的卷积层和池化层,以增加网络的表达能力和感受野。同时,yolov8还采用了一些新的模块,如SE模块和SAM模块,用于增强特征提取能力和注意力机制。
2. 损失函数改进:yolov8引入了新的损失函数,如CIoU损失和DIoU损失,用于优化目标框的回归精度。这些新的损失函数能够更好地处理目标框的重叠和不平衡问题,提高了目标检测的准确性。
3. 训练策略改进:yolov8采用了更加先进的训练策略,如mixup数据增强和自适应权重调整等。这些策略能够增加训练数据的多样性和泛化能力,提高了目标检测的鲁棒性和准确性。
综上所述,yolov8相对于yolov7在网络结构、损失函数和训练策略等方面进行了改进和优化,提高了目标检测的准确性和速度。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [yolov7和yolov8的创新点详解(附:汇报用的PPT)](https://blog.csdn.net/m0_74890428/article/details/130338162)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文