matlab多目标规划代码GA
时间: 2023-10-05 09:08:49 浏览: 81
基于GA的多目标优化matlab程序,ga算法matlab程序,matlab
5星 · 资源好评率100%
您好!对于多目标规划问题,可以使用遗传算法(Genetic Algorithm,GA)来求解。下面是一个简单的MATLAB多目标规划问题的GA代码示例:
```matlab
% 定义目标函数
function f = objFunc(x)
f(1) = x(1)^2 + x(2)^2; f(2) = (x(1)-1)^2 + x(2)^2;
end
% 定义GA参数
nVar = 2; % 变量个数
nObj = 2; % 目标个数
varMin = -10; % 变量最小值
varMax = 10; % 变量最大值
nPop = 50; % 种群大小
maxGen = 100; % 最大迭代次数
% 初始化种群
empty_individual.position = [];
empty_individual.cost = [];
pop = repmat(empty_individual, nPop, 1);
for i = 1:nPop
pop(i).position = unifrnd(varMin, varMax, 1, nVar);
pop(i).cost = objFunc(pop(i).position);
end
% 进化循环
for gen = 1:maxGen
% 生成子代种群
offspring = [];
for k = 1:nPop
% 选择父代
p1 = BinaryTournament(pop);
p2 = BinaryTournament(pop);
% 交叉
c = Cross(p1, p2);
% 变异
c = Mutate(c, varMin, varMax);
% 计算子代适应度
c.cost = objFunc(c.position);
% 添加到子代种群
offspring = [offspring; c];
end
% 合并父代和子代种群
combinedPop = [pop; offspring];
% 非支配排序和拥挤度距离计算
combinedPop = NonDominatedSorting(combinedPop);
combinedPop = CalculateCrowdingDistance(combinedPop);
% 选择下一代种群
pop = EnvironmentalSelection(combinedPop, nPop);
end
% 输出最优解
bestIndividual = pop(1);
disp('最优解:');
disp(bestIndividual.position);
disp('最优目标函数值:');
disp(bestIndividual.cost);
% 二元锦标赛选择
function p = BinaryTournament(pop)
nPop = numel(pop);
i1 = randi([1, nPop]);
i2 = randi([1, nPop]);
if pop(i1).cost(1) < pop(i2).cost(1) || (pop(i1).cost(1) == pop(i2).cost(1) && pop(i1).cost(2) < pop(i2).cost(2))
p = pop(i1);
else
p = pop(i2);
end
end
% 单点交叉
function c = Cross(p1, p2)
nVar = numel(p1.position);
c.position = zeros(1, nVar);
for i = 1:nVar
if rand <= 0.5
c.position(i) = p1.position(i);
else
c.position(i) = p2.position(i);
end
end
end
% 多项式变异
function c = Mutate(c, varMin, varMax)
nVar = numel(c.position);
for i = 1:nVar
if rand <= 0.1
c.position(i) = varMin + rand * (varMax - varMin);
end
end
end
% 非支配排序
function pop = NonDominatedSorting(pop)
nPop = numel(pop);
F = {};
F{1} = [];
nF = 1;
for i = 1:nPop
pop(i).dominationSet = [];
pop(i).dominatedCount = 0;
for j = 1:nPop
if Dominates(pop(i), pop(j))
pop(i).dominationSet = [pop(i).dominationSet, j];
elseif Dominates(pop(j), pop(i))
pop(i).dominatedCount = pop(i).dominatedCount + 1;
end
end
if pop(i).dominatedCount == 0
pop(i).rank = 1;
F{1} = [F{1}, i];
end
end
while ~isempty(F{nF})
Q = [];
for i = F{nF}
for j = pop(i).dominationSet
pop(j).dominatedCount = pop(j).dominatedCount - 1;
if pop(j).dominatedCount == 0
pop(j).rank = nF + 1;
Q = [Q, j];
end
end
end
nF = nF + 1;
F{nF} = Q;
end
end
% 支配关系判断
function flag = Dominates(p1, p2)
flag = all(p1.cost <= p2.cost) && any(p1.cost < p2.cost);
end
% 计算拥挤度距离
function pop = CalculateCrowdingDistance(pop)
nPop = numel(pop);
nObj = numel(pop(1).cost);
for j = 1:nObj
[sortedCost, sortedIndex] = sort([pop.cost], 'ascend');
pop(sortedIndex(1)).distance = inf;
pop(sortedIndex(nPop)).distance = inf;
for i = 2:nPop-1
pop(sortedIndex(i)).distance = pop(sortedIndex(i)).distance + (sortedCost(i+1) - sortedCost(i-1))/(sortedCost(nPop) - sortedCost(1));
end
end
end
% 环境选择
function pop = EnvironmentalSelection(pop, nPop)
nObj = numel(pop(1).cost);
[sortedRank, sortedIndex] = sort([pop.rank]);
front = sortedIndex(sortedRank == 1);
if numel(front) <= nPop
pop = pop(front);
else
pop = [];
for i = 1:numel(front)
if numel(pop) == nPop
break;
end
if numel(pop) + numel(front) - i + 1 <= nPop
pop = [pop; pop(front(i))];
else
[sortedDistance, sortedIndex] = sort([pop(front(i)).distance], 'descend');
pop = [pop; pop(front(i))];
pop = [pop; pop(sortedIndex(1:nPop-numel(pop)))];
break;
end
end
end
end
```
这个例子中,目标函数为两个二次函数,遗传算法通过多次迭代来优化目标函数,并输出最优解及最优目标函数值。您可以根据自己的具体问题修改目标函数和遗传算法的参数,以适应您的多目标规划问题。
希望对您有帮助!如果有任何问题,请随时向我提问。
阅读全文