stm32f103c8t6如何配置成用fly_mcu烧录

时间: 2024-07-15 09:00:49 浏览: 109
STM32F103C8T6是一款基于Cortex-M3内核的微控制器,使用Fly mcu烧录通常涉及以下步骤: 1. **下载开发工具**:首先,你需要下载STM32CubeMX或Keil MDK等支持该型号MCU的集成开发环境(IDE)。 2. **设置开发板类型**:在软件中,选择"Target"或"Device"选项,选择STM32F103C8T6作为你的目标芯片。 3. **配置串口调试**:在STM32CubeMX中,进入"Communication"设置,选择"SWD"(如果可用),并配置好对应的串口号(如USART1)和波特率(通常为115200)用于与飞麦CU的烧录器通信。 4. **下载固件库**:飞麦CU可能有自己的固件库或支持包,确保你已经将其添加到你的项目中,并正确配置。 5. **烧录设置**:在烧录配置中,找到对应的烧录功能(一般有ISP、SWD等),设置起始地址和结束地址,以及要烧录的bin或hex文件路径。 6. **连接硬件**:将STM32F103C8T6的SWD接口与飞麦CU的烧录器连接,通常通过JTAG或ISP编程接口。 7. **烧录过程**:在开发工具中点击"Start Debugging"或"Program"按钮开始烧录。烧录过程中保持MCU和电脑的连接稳定,遵循烧录器的提示。 8. **验证**:烧录完成后,你可以通过重启芯片或检查程序运行结果来确认是否成功。
相关问题

stm32f103c8t6新版串口烧录

### STM32F103C8T6最新版本串口烧录方法 对于STM32F103C8T6的串口烧录,通常涉及几个主要组件:USB转TTL模块、编程环境(如Keil或IAR)、以及必要的配置工具(如CubeMX)。具体操作流程如下: #### 准备工作 为了成功完成串口烧录,需要准备以下材料: - USB转TTL转换器用于提供UART通信接口[^2]。 - 开发板上的PA9 (USART1_TX) 和 PA10 (USART1_RX) 需要分别连接至USB转TTL模块的RXD和TXD引脚;同时确保电源线(3.3V)与地(GND)也已正确对接。 #### 软件设置 使用ST官方推荐的方式来进行初始化配置,可以通过STM32CubeMX生成初始项目框架并设定启动参数。这一步骤有助于简化后续编译链接过程,并能有效减少可能出现的人为错误。 #### 编程环境搭建 安装好相应的IDE之后,在工程选项里指定正确的MCU型号及其对应的闪存加载地址。这里需要注意的是,某些非原厂生产的芯片可能具有不同的IDCODE值,因此建议先通过调试工具读取实际设备的信息来确认其兼容性[^3]。 #### 烧写固件 当一切就绪后,利用集成于IDE内的Flash Loader Driver功能或是第三方插件(比如FlyMcu)执行最终的应用程序上传任务。在此期间保持稳定的物理连接至关重要,任何意外断开都可能导致失败的结果。 ```python import serial ser = serial.Serial('COM3', baudrate=115200, timeout=1) def send_data(data): ser.write(data.encode()) send_data("Your command here") ``` 此Python代码片段展示了如何建立一个简单的串行端口通讯实例,可用于发送指令给目标微控制器进行测试验证目的。

stm32f103c8t6最小系统板ch340

### 关于STM32F103C8T6最小系统板与CH340的相关资料 #### 使用串口烧写程序至STM32F103C8T6最小板 当缺少ST-LINK V2下载器时,可以采用USB转串口的方式通过CH340芯片来完成程序的烧录工作。此方法依赖于仿真软件FlyMcu进行操作,在执行前需确认已正确安装好CH340对应的驱动程序[^2]。 #### 所需硬件设备 - STM32F103C8T6最小系统板 - USB转TTL接口(内含CH340转换芯片) #### 配套开发环境搭建 为了顺利开展基于上述平台的应用开发活动,建议准备如下几款常用工具并完成其部署: ##### 开发工具链配置 - **Keil uVision5**: 作为一款广泛应用于嵌入式系统的集成开发环境(IDE),支持多种架构下的固件编写任务。 - **STM32CubeMX v6.6.1**: 提供图形化界面辅助开发者初始化MCU参数设置以及自动生成底层驱动代码的服务;特别适合初学者快速入门。 - **FlyMcu**: 主要服务于不具备SWD/JTAG调试接口资源的情况下,借助RS232/UART通道实现在线编程功能的一款实用型客户端应用。 以上提及的各项组件均可以通过互联网渠道免费获取最新版本以满足实际需求[^3]。 #### 实战案例分享 针对具体应用场景如控制LED灯循环点亮熄灭或是处理来自外部传感器的数据交互等问题,则可参照官方文档或社区贡献的技术文章进一步深入研究实践方案[^1]。
阅读全文

相关推荐

最新推荐

recommend-type

STM32F103C8T6开发板+GY521制作Betaflight飞控板详细图文教程

STM32F103C8T6是意法半导体公司生产的微控制器,属于STM32系列中的基础型产品,采用高性能的ARM Cortex-M3 32位内核,工作频率高达72MHz,内置高速存储器(最高512KB闪存,64KB SRAM),具有丰富的外设接口,如GPIO...
recommend-type

【MCU实战经验】基于STM32F103C8T6的hart总线收发器设计

本文将详细讨论基于STM32F103C8T6微控制器的HART(Highway Addressable Remote Transducer)总线调试器的设计。HART协议是一种广泛应用在工业现场的通信协议,允许智能设备与传统4-20mA模拟信号一起工作,用于仪表的...
recommend-type

MAX30102心率血氧传感器在STM32F103C8T6上的应用

标题中的“MAX30102心率血氧传感器在STM32F103C8T6上的应用”指的是将MAX30102这款传感器集成到基于STM32F103C8T6微控制器的系统中,用于监测心率和血氧饱和度。MAX30102是一款集成度高的光学传感器,它结合了红外和...
recommend-type

启明欣欣stm32f103rct6开发板原理图

STM32F103RCT6是一款基于ARM Cortex-M3内核的微控制器,由意法半导体(STM)生产。这款芯片具有高性能、低功耗的特点,适用于各种嵌入式应用,如工业控制、消费电子和通信设备等。启明欣欣STM32F103RCT6开发板提供了...
recommend-type

基于苍鹰优化算法的NGO支持向量机SVM参数c和g优化拟合预测建模(Matlab实现),苍鹰优化算法NGO优化支持向量机SVM的c和g参数做多输入单输出的拟合预测建模 程序内注释详细直接替数据就可以

基于苍鹰优化算法的NGO支持向量机SVM参数c和g优化拟合预测建模(Matlab实现),苍鹰优化算法NGO优化支持向量机SVM的c和g参数做多输入单输出的拟合预测建模。 程序内注释详细直接替数据就可以使用。 程序语言为matlab。 程序直接运行可以出拟合预测图,迭代优化图,线性拟合预测图,多个预测评价指标。 PS:以下效果图为测试数据的效果图,主要目的是为了显示程序运行可以出的结果图,具体预测效果以个人的具体数据为准。 2.由于每个人的数据都是独一无二的,因此无法做到可以任何人的数据直接替就可以得到自己满意的效果。 ,核心关键词:苍鹰优化算法; NGO优化; 支持向量机SVM; c和g参数; 多输入单输出拟合预测建模; Matlab程序; 拟合预测图; 迭代优化图; 线性拟合预测图; 预测评价指标。,MATLAB实现:基于苍鹰优化算法与NGO优化SVM的c和g参数多输入单输出预测建模工具
recommend-type

Droste:探索Scala中的递归方案

标题和描述中都提到的“droste”和“递归方案”暗示了这个话题与递归函数式编程相关。此外,“droste”似乎是指一种递归模式或方案,而“迭代是人类,递归是神圣的”则是一种比喻,强调递归在编程中的优雅和力量。为了更好地理解这个概念,我们需要分几个部分来阐述。 首先,要了解什么是递归。在计算机科学中,递归是一种常见的编程技术,它允许函数调用自身来解决问题。递归方法可以将复杂问题分解成更小、更易于管理的子问题。在递归函数中,通常都会有一个基本情况(base case),用来结束递归调用的无限循环,以及递归情况(recursive case),它会以缩小问题规模的方式调用自身。 递归的概念可以追溯到数学中的递归定义,比如自然数的定义就是一个经典的例子:0是自然数,任何自然数n的后继者(记为n+1)也是自然数。在编程中,递归被广泛应用于数据结构(如二叉树遍历),算法(如快速排序、归并排序),以及函数式编程语言(如Haskell、Scala)中,它提供了强大的抽象能力。 从标签来看,“scala”,“functional-programming”,和“recursion-schemes”表明了所讨论的焦点是在Scala语言下函数式编程与递归方案。Scala是一种多范式的编程语言,结合了面向对象和函数式编程的特点,非常适合实现递归方案。递归方案(recursion schemes)是函数式编程中的一个高级概念,它提供了一种通用的方法来处理递归数据结构。 递归方案主要分为两大类:原始递归方案(原始-迭代者)和高级递归方案(例如,折叠(fold)/展开(unfold)、catamorphism/anamorphism)。 1. 原始递归方案(primitive recursion schemes): - 原始递归方案是一种模式,用于定义和操作递归数据结构(如列表、树、图等)。在原始递归方案中,数据结构通常用代数数据类型来表示,并配合以不变性原则(principle of least fixed point)。 - 在Scala中,原始递归方案通常通过定义递归类型类(如F-Algebras)以及递归函数(如foldLeft、foldRight)来实现。 2. 高级递归方案: - 高级递归方案进一步抽象了递归操作,如折叠和展开,它们是处理递归数据结构的强大工具。折叠允许我们以一种“下降”方式来遍历和转换递归数据结构,而展开则是“上升”方式。 - Catamorphism是将数据结构中的值“聚合成”单一值的过程,它是一种折叠操作,而anamorphism则是从单一值生成数据结构的过程,可以看作是展开操作。 - 在Scala中,高级递归方案通常与类型类(如Functor、Foldable、Traverse)和高阶函数紧密相关。 再回到“droste”这个词,它很可能是一个递归方案的实现或者是该领域内的一个项目名。根据文件名称“droste-master”,可以推测这可能是一个仓库,其中包含了与递归方案相关的Scala代码库或项目。 总的来说,递归方案和“droste”项目都属于高级函数式编程实践,它们为处理复杂的递归数据结构提供了一种系统化和模块化的手段。在使用Scala这类函数式语言时,递归方案能帮助开发者写出更简洁、可维护的代码,同时能够更安全、有效地处理递归结构的深层嵌套数据。
recommend-type

Simulink DLL性能优化:实时系统中的高级应用技巧

# 摘要 本文全面探讨了Simulink DLL性能优化的理论与实践,旨在提高实时系统中DLL的性能表现。首先概述了性能优化的重要性,并讨论了实时系统对DLL性能的具体要求以及性能评估的方法。随后,详细介绍了优化策略,包括理论模型和系统层面的优化。接着,文章深入到编码实践技巧,讲解了高效代码编写原则、DLL接口优化和
recommend-type

rust语言将文本内容转换为音频

Rust是一种系统级编程语言,它以其内存安全性和高性能而闻名。虽然Rust本身并不是专门用于音频处理的语言,但它可以与其他库配合来实现文本转音频的功能。通常这种任务需要借助外部库,比如`ncurses-rs`(控制台界面库)结合`wave`、`audio-kit-rs`等音频处理库,或者使用更专业的第三方库如`flac`、`opus`等进行编码。 以下是使用Rust进行文本转音频的一个简化示例流程: 1. 安装必要的音频处理库:首先确保已经安装了`cargo install flac wave`等音频编码库。 2. 导入库并创建音频上下文:导入`flac`库,创建一个可以写入FLAC音频
recommend-type

安卓蓝牙技术实现照明远程控制

标题《基于安卓蓝牙的远程控制照明系统》指向了一项技术实现,即利用安卓平台上的蓝牙通信能力来操控照明系统。这一技术实现强调了几个关键点:移动平台开发、蓝牙通信协议以及照明控制的智能化。下面将从这三个方面详细阐述相关知识点。 **安卓平台开发** 安卓(Android)是Google开发的一种基于Linux内核的开源操作系统,广泛用于智能手机和平板电脑等移动设备上。安卓平台的开发涉及多个层面,从底层的Linux内核驱动到用户界面的应用程序开发,都需要安卓开发者熟练掌握。 1. **安卓应用框架**:安卓应用的开发基于一套完整的API框架,包含多个模块,如Activity(界面组件)、Service(后台服务)、Content Provider(数据共享)和Broadcast Receiver(广播接收器)等。在远程控制照明系统中,这些组件会共同工作来实现用户界面、蓝牙通信和状态更新等功能。 2. **安卓生命周期**:安卓应用有着严格的生命周期管理,从创建到销毁的每个状态都需要妥善管理,确保应用的稳定运行和资源的有效利用。 3. **权限管理**:由于安卓应用对硬件的控制需要相应的权限,开发此类远程控制照明系统时,开发者必须在应用中声明蓝牙通信相关的权限。 **蓝牙通信协议** 蓝牙技术是一种短距离无线通信技术,被广泛应用于个人电子设备的连接。在安卓平台上开发蓝牙应用,需要了解和使用安卓提供的蓝牙API。 1. **蓝牙API**:安卓系统通过蓝牙API提供了与蓝牙硬件交互的能力,开发者可以利用这些API进行设备发现、配对、连接以及数据传输。 2. **蓝牙协议栈**:蓝牙协议栈定义了蓝牙设备如何进行通信,安卓系统内建了相应的协议栈来处理蓝牙数据包的发送和接收。 3. **蓝牙配对与连接**:在实现远程控制照明系统时,必须处理蓝牙设备间的配对和连接过程,这包括了PIN码验证、安全认证等环节,以确保通信的安全性。 **照明系统的智能化** 照明系统的智能化是指照明设备可以被远程控制,并且可以与智能设备进行交互。在本项目中,照明系统的智能化体现在能够响应安卓设备发出的控制指令。 1. **远程控制协议**:照明系统需要支持一种远程控制协议,安卓应用通过蓝牙通信发送特定指令至照明系统。这些指令可能包括开/关灯、调整亮度、改变颜色等。 2. **硬件接口**:照明系统中的硬件部分需要具备接收和处理蓝牙信号的能力,这通常通过特定的蓝牙模块和微控制器来实现。 3. **网络通信**:如果照明系统不直接与安卓设备通信,还可以通过Wi-Fi或其它无线技术进行间接通信。此时,照明系统内部需要有相应的网络模块和协议栈。 **相关技术实现示例** 在具体技术实现方面,假设我们正在开发一个名为"LightControl"的安卓应用,该应用能够让用户通过蓝牙与家中的智能照明灯泡进行交互。以下是几个关键步骤: 1. **用户界面设计**:设计简洁直观的用户界面,提供必要的按钮和指示灯,用于显示当前设备状态和发送控制指令。 2. **蓝牙操作实现**:编写代码实现搜索蓝牙设备、配对、建立连接及数据传输的功能。安卓应用需扫描周围蓝牙设备,待用户选择相应照明灯泡后,进行配对和连接,之后便可以发送控制指令。 3. **指令解码与执行**:照明设备端需要有对应的程序来监听蓝牙信号,当接收到特定格式的指令时,执行相应的控制逻辑,如开启/关闭电源、调节亮度等。 4. **安全性考虑**:确保通信过程中的数据加密和设备认证,防止未授权的访问或控制。 在技术细节上,开发者需要对安卓开发环境、蓝牙通信流程有深入的了解,并且在硬件端具备相应的编程能力,以保证应用与硬件的有效对接和通信。 通过上述内容的详细阐述,可以看出安卓蓝牙远程控制照明系统的实现是建立在移动平台开发、蓝牙通信协议和智能化硬件控制等多个方面的综合技术运用。开发者需要掌握的不仅仅是编程知识,还应包括对蓝牙技术的深入理解和对移动设备通信机制的全面认识。
recommend-type

【Simulink DLL集成】:零基础快速上手,构建高效模型策略

# 摘要 本文综合介绍了Simulink模型与DLL(动态链接库)的集成过程,详细阐述了从模型构建基础到DLL集成的高级策略。首先概述了Simulink模型构建的基本概念、参数化和仿真调试方法。接着,深入探讨了DLL的基础知识、在Simulink中的集成